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A Riemannian manifold with skew-circulant structures
and an associated locally conformal Kähler manifold

Iva Dokuzova12 and Dimitar Razpopov3

Abstract. A 4-dimensional Riemannian manifold M , equipped with
an additional tensor structure S, whose fourth power is minus identity,
is considered. The structure S has a skew-circulant matrix with respect
to some basis and S acts as an isometry with respect to the metric g.
A fundamental tensor is defined on such a manifold (M, g, S) by g and
by the covariant derivative of S. This tensor satisfies a characteristic
identity which is invariant to the usual conformal transformation. Some
curvature properties of (M, g, S) are obtained. A Lie group as a manifold
of the considered type is constructed. A Hermitian manifold associated
with (M, g, S) is also considered. It turns out that it is a locally conformal
Kähler manifold.
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1. Introduction

The classification of almost Hermitian manifolds with respect to the covari-
ant derivative of the almost complex structure J is made by Gray and Hervella
in [6]. The Hermitian manifolds form a class of manifolds with an integrable
almost complex structure J . Their subclass consists of the so-called locally
conformal Kähler manifolds, determined by a special property of the covari-
ant derivative of J . The class of Kähler manifolds is common to all classes
in this classification and its manifolds have the richest geometry. The Kähler
manifolds are extensively studied by many geometers. There is also a great in-
terest in the study of locally conformal Kähler manifolds, since their structure
J satisfies similar but weaker conditions than those of Kähler manifolds. Some
of the recent investigations of locally conformal Kähler manifolds are made in
[1, 3, 7, 9, 11, 12].

Problems in differential geometry of a 4-dimensional Riemannian manifold
M with a tensor structure S of type (1, 1), which satisfies S4 = −id, are
considered in [5]. The matrix of S in some basis is skew-circulant. Moreover, S
is compatible with the metric g, so that an isometry is induced in any tangent

1Department of Algebra and Geometry, University of Plovdiv Paisii Hilendarski, 24 Tzar
Asen, 4000 Plovdiv, Bulgaria, e-mail: dokuzova@uni-plovdiv.bg

2Corresponding author
3Department of Mathematics and Informatics, Agricultural University of Plovdiv, 12

Mendeleev Blvd., 4000 Plovdiv, Bulgaria, e-mail: razpopov@au-plovdiv.bg

https://doi.org/10.30755/NSJOM.12412
mailto:dokuzova@uni-plovdiv.bg
mailto:razpopov@au-plovdiv.bg


F
ir
st

on
li
n
e
-
A
u
gu

st
2
5
,
2
0
2
3
.
D
ra
ft

ve
rs
io
n
-
A
u
g
u
st

2
4
,
2
0
2
3

2 Dimitar Razpopov, Iva Dokuzova

space of M . A Hermitian manifold (M, g, J), where J = S2, is associated with
such a manifold (M, g, S).

In the present work, we continue the study of (M, g, S) and (M, g, J). In
Section 2, we recall some necessary facts about these manifolds. In Section 3, we
compute the components of the fundamental tensor F on (M, g, S) determined
by the metric g and by the covariant derivative of S. We obtain an important
characteristic identity for F . We establish that the image of the fundamental
tensor with respect to the usual conformal transformation satisfies the same
identity. In Section 4, we find some curvature properties of (M, g, S). In
Section 5, we establish that the associated manifold (M, g, J) belongs to the
class of locally conformal Kähler manifolds. In Section 6, we construct a Lie
group with a Lie algebra of a special class as a manifold with the structure
(g, S).

2. Preliminaries

We consider a 4-dimensional Riemannian manifold M equipped with a ten-
sor S of type (1, 1). The structure S has a skew-circulant matrix, with respect
to some basis, given by

(2.1) (Sk
j ) =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

 .

Then S has the property
S4 = −id.

The metric g and the structure S satisfy

(2.2) g(Sx, Sy) = g(x, y), x, y ∈ X(M).

The above condition and (2.1) imply that the matrix of g has the form:

(2.3) (gij) =


A B 0 −B
B A B 0
0 B A B

−B 0 B A

 .

Here A and B are smooth functions of an arbitrary point p(x1, x2, x3, x4) on
M . It is supposed that A >

√
2B > 0 in order g to be positive definite. The

manifold (M, g, S) is introduced in [5].
Anywhere in this work, x, y, z, u will stand for arbitrary elements of the

algebra of the smooth vector fields X(M) or vectors in the tangent space TpM .
The Einstein summation convention is used, the range of the summation indices
being always {1, 2, 3, 4}.

In [5], it is noted that the manifold (M, g, J), where J = S2, is a Hermi-
tian manifold with an almost complex structure J . For such manifolds Gray-
Hervella’s classification is valid ([6]). This classification is made with respect
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A Riemannian manifold with skew-circulant structures 3

to the covariant derivative of the Kähler form J(x, y) = g(x, Jy). The almost
Hermitian manifolds with an integrable structure J are called Hermitian man-
ifolds. Their subclass of locally conformal Kähler manifolds is determined by
the property

g
(
(∇xJ)y, z

)
=
1

2

{
(g(x, y)ω(z)− g(x, z)ω(y) + g(x, Jy)ω(Jz)

− g(x, Jz)ω(Jy)
}
, ω(x) = gijg

(
(∇eiJ)ej , x

)
.

(2.4)

Here ∇ is the Levi-Civita connection of g, and gij are the components of the
inverse matrix of (gij) with respect to the basis {ei} of TpM .

It is known that the class of 4-dimensional locally conformal Kähler man-
ifolds is non-trivial. Every Kähler manifold belongs to the class of locally
conformal Kähler manifolds ([6]).

Now we consider an associated metric g̃ with g on (M, g, S), determined by

(2.5) g̃(x, y) = g(x, Sy) + g(Sx, y).

The fundamental tensor F of type (0, 3) and the 1-form θ are defined by

(2.6) F (x, y, z) = (∇xg̃)(y, z), θ(x) = gijF (ei, ej , x),

and F has the property

(2.7) F (x, z, y) = F (x, y, z).

The following necessary and sufficient conditions for S and also for J = S2

to be parallel structures with respect to ∇ are established in [5].

Theorem 2.1. The manifold (M, g, S) satisfies ∇S = 0 if and only if

A1 = B2 −B4, A2 = B1 +B3, A3 = B2 +B4, A4 = B3 −B1,

where Ai =
∂A

∂xi
, Bi =

∂B

∂xi
.

Theorem 2.2. The structure S on (M, g, S) satisfies ∇S = 0 if and only if
∇J = 0, i.e. (M, g, J) is a Kähler manifold.

3. The fundamental tensor F on (M, g, S)

In this section, we obtain a characteristic property of the tensor F on
(M, g, S), which is an analogue of the property (2.4) of ∇J on (M, g, J). For
this purpose we calculate the components of F .
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4 Dimitar Razpopov, Iva Dokuzova

Lemma 3.1. The components Fijk = F (ei, ej , ek) of the fundamental tensor
F on the manifold (M, g, S) are given by

F111 =2F124 = 2F313 = A2 −A4 − 2B1,

F222 =2F424 = −2F213 = A1 +A3 − 2B2,

F333 =2F113 = −2F324 = A2 +A4 − 2B3,

F444 =2F224 = 2F413 = A3 −A1 − 2B4,

F133 =F311 = 0, F244 = F422 = 0,

F233 =F433 = −2F112 = −2F114 = −2F134 = 2F123 = B2 +B4 −A3,

F122 =F322 = −2F412 = −2F414 = −2F434 = 2F423 = B1 +B3 −A2,

F211 =− F411 = 2F312 = 2F314 = 2F334 = −2F323 = B2 −B4 −A1,

F344 =− F144 = 2F212 = 2F214 = 2F234 = −2F223 = B3 −B1 −A4.

(3.1)

Proof. The inverse matrix of (gij) has the form:

(3.2) (gik) =
1

D


A −B 0 B
−B A −B 0
0 −B A −B
B 0 −B A

 ,

where D = A2 − 2B2.

Using (2.1) and (2.3) we get that the matrix g̃, determined by (2.5), is of
the type:

(3.3) (g̃ij) =


2B A 0 −A
A 2B A 0
0 A 2B A

−A 0 A 2B

 .

Due to (2.6) the components of F are Fijk = ∇ig̃jk. We apply to g̃ the following
well-known formula for the covariant derivative of tensors:

(3.4) ∇ig̃jk = ∂ig̃jk − Γa
ij g̃ak − Γa

ikg̃aj .

Here Γs
ij are the Christoffel symbols of ∇. They are determined by

(3.5) 2Γk
ij = gak(∂igaj + ∂jgai − ∂agij).

Then, with the help of (2.3), (2.6), (2.7), (3.2), (3.3) and (3.4) we calculate the
components of F , given in (3.1).

Immediately, we have the following
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A Riemannian manifold with skew-circulant structures 5

Corollary 3.2. The components θk = gijF (ei, ej , ek) of the 1-form θ on the
manifold (M, g, S) are expressed by the equalities

θ1 =
2

D

(
A(A2 −A4 − 2B1)− 2B(B2 −B4 −A1)

)
,

θ2 =
2

D

(
A(A1 +A3 − 2B2)− 2B(B1 +B3 −A2)

)
,

θ3 =
2

D

(
A(A2 +A4 − 2B3) + 2B(B2 +B4 −A3)

)
,

θ4 =
2

D

(
A(A3 −A1 − 2B4) + 2B(B3 −B1 −A4)

)
.

(3.6)

Proof. The proof follows from (3.1) and (3.2) by direct computations.

Corollary 3.3. The components θ∗k = gijF (ei, Sej , ek) of the 1-form θ∗ on the
manifold (M, g, S) are expressed by the equalities

θ∗1 =
2

D

(
A(B2 −B4 −A1)−B(A2 −A4 − 2B1)

)
,

θ∗2 =
2

D

(
A(B1 +B3 −A2)−B(A1 +A3 − 2B2)

)
,

θ∗3 =
2

D

(
A(B2 +B4 −A3)−B(A2 +A4 − 2B3)

)
,

θ∗4 =
2

D

(
A(B3 −B1 −A4)−B(A3 −A1 − 2B4)

)
.

(3.7)

Proof. Using (2.1), (3.1) and (3.2), we find (3.7).

Having in mind Lemma 3.1, Corollary 3.2 and Corollary 3.3 we get the next
statements.

Theorem 3.4. The fundamental tensor F on the manifold (M, g, S) satisfies
the identity

F (x, y, z) =
1

4

{
g(x, y)θ(z) + g(x, z)θ(y) +

(
g(Sx, y) + g(x, Sy)

)
θ∗(z)

+
(
g(Sx, z) + g(x, Sz)

)
θ∗(y)

}
.

(3.8)

Proof. Using (2.1), (2.3), (3.1), (3.3), (3.6) and (3.7) we obtain

Fkij =
1

4

(
gkjθi + gkiθj + g̃kjθ

∗
i + g̃kiθ

∗

j

)
,(3.9)

which is equivalent to (3.8).

Remark 3.5. Comparing equalities in Theorem 2.1 and Lemma 3.1 we state
that F = 0 if and only if the structure S is parallel with respect to ∇.

Theorem 3.6. The fundamental tensor F on the manifold (M, g, S) has the
property

F (x, Jy, Jz) + F (y, Jz, Jx) + F (z, Jx, Jy) = 0,(3.10)

where J = S2.
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6 Dimitar Razpopov, Iva Dokuzova

Proof. Due to (2.1), (2.6), (2.7) and (3.1) we get that (3.10) holds true.

Theorem 3.7. Under the conformal transformation

(3.11) g(x, y) = αg(x, y),

where α is a smooth positive function, the tensor F is transformed into the
tensor

F (x, y, z) =
1

4

{
g(x, y)θ(z) + g(x, z)θ(y) +

(
g(Sx, y) + g(x, Sy)

)
θ
∗
(z)

+
(
g(Sx, z) + g(x, Sz)

)
θ
∗
(y)

}(3.12)

with θ = θ +
2

α
dα ◦ (S − S3) and θ

∗
= θ∗ − 2

α
dα.

Proof. The inverse matrix of (g̃ij) has the form

(3.13) (g̃ik) =
1

2D


−2B A 0 −A
A −2B A 0
0 A −2B A

−A 0 A −2B

 .

Bearing in mind (2.3), (3.2), (3.3) and (3.13), we get

(3.14) g̃ijg
is = Φs

j , gij g̃
is =

1

2
Φs

j ,

where

(3.15) (Φs
j) =


0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0

 .

Because of (2.1) and (3.15) we have Φ = S − S3.
Now, from (3.6), (3.7) and (3.15), we find

θ∗i = −1

2
Φs

i θs.(3.16)

According to the transformation (3.11), the components of the tensor F
are F ijk = ∇ig̃jk, where g̃ = αg̃ and ∇ is the Levi-Civita connection of g.
Therefore, it follows

(3.17) ∇ g̃ = α∇g̃ + g̃∇α.

From the Christoffel formulas (3.5) and

2Γ
k

ij = gks(∂igsj + ∂jgsi − ∂sgij),
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A Riemannian manifold with skew-circulant structures 7

and due to (3.11) we get

Γ
k

ij = Γk
ij +

1

2α
(δkj αi + δki αj − gijg

ksαs), αs =
∂α

∂xs
.

Then, applying (3.4) to ∇g̃ and using (3.14), we obtain

∇kg̃ji = ∇kg̃ji −
1

2α
(g̃jiαk + g̃ikαj − gkjΦ

s
iαs)

− 1

2α
(g̃kjαi + g̃ijαk − gikΦ

s
jαs).

(3.18)

Substituting (3.18) into (3.17), and taking into account (3.9), (3.14), (3.15)
and (3.16), we get

∇kg̃ji =
1

4

{
αgkj

(
θi +

2αs

α
Φs

i

)
+ αgki

(
θj +

2αs

α
Φs

j

)
+ αg̃kj

(
θ∗i −

2αi

α

)
+ αg̃ki

(
θ∗j −

2αj

α

)}
,

which implies

F kji =
1

4

(
gkjθi + gkiθj + g̃kjθ

∗
i + g̃kiθ

∗
j

)
,

θi = θi +
2

α
Φs

iαs, θ
∗
i = −1

2
Φs

i θs.

Thus, for (M, g, S), the identity (3.12) is valid .

Remark 3.8. According to Theorem 3.7, we can say that (M, g, S) and (M, g, S)
belong to classes of the same type, defined by the equality (3.8) for the corre-
sponding metric.

Immediately, from (2.5), (2.6), (3.12) and (3.14) it follows

Corollary 3.9. If F = 0 holds, then it is valid

F (x, y, z) =
1

2

{
g(x, y)α(Φz) + g(x, z)α(Φy)− g̃(x, y)α(z)

− g̃(x, z)α(y)
}
.

(3.19)

Next, we obtain

Corollary 3.10. If F = 0 holds, then F vanishes if and only if α is a constant.

Proof. The local form of (3.19) is

(3.20) F kij =
1

2

(
gkjΦ

s
iαs + gkiΦ

s
jαs − g̃kjαi − g̃kiαj

)
.

Let the tensor F vanish. Hence equality (3.20) yields

gkjΦ
s
iαs + gkiΦ

s
jαs − g̃kjαi − g̃kiαj = 0.

Contracting by gkj in the latter equality, and using (3.14) and (3.15), we find
Φs

iαs = 0, which implies α1 = α2 = α3 = α4 = 0, i.e. α is a constant.
Vice versa. If α is a constant, then (3.20) implies F = 0.
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8 Dimitar Razpopov, Iva Dokuzova

4. Some curvature properties of (M, g, S)

It is well-known, that the curvature tensor R of ∇ is defined by

R(x, y)z = ∇x∇yz −∇y∇xz −∇[x,y]z.

The tensor of type (0, 4) associated with R is defined as follows:

R(x, y, z, u) = g(R(x, y)z, u).

The Ricci tensor ρ and the scalar curvature τ with respect to g are as
usually:

(4.1) ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej).

In this section we investigate some curvature properties of (M, g, S), corre-
sponding to the metric g and to the associated metric g̃.

Let Γ̃ be the Christoffel symbols of g̃ and ∇̃ the Levi-Civita connection of
g̃. Let R̃ be the curvature tensor of ∇̃. The Ricci tensor ρ̃ and the scalar
curvature τ̃ with respect to g̃ are given by

(4.2) ρ̃(y, z) = g̃ijR̃(ei, y, z, ej), τ̃ = g̃ij ρ̃(ei, ej).

Let us denote

(4.3) τ∗ = g̃ijρ(ei, ej), τ̃∗ = gij ρ̃(ei, ej).

Therefore we establish the following

Theorem 4.1. Let g̃ be the associated metric with g on (M, g, S). For the
Ricci tensors ρ and ρ̃ and for the scalar quantities τ , τ∗, τ̃ and τ̃∗ the following
relation is valid:

(4.4) ρ̃(x, y) = ρ(x, y) +
1

4
(τ̃∗ − τ)g(x, y) +

1

4
(τ̃ − τ∗)g̃(x, y).

Proof. From (3.4), applying the Christoffel formulas (3.5) to Γ and also to Γ̃,
we obtain

Γ̃k
ij = Γk

ij +
1

2
g̃ks(∇ig̃js +∇j g̃is −∇sg̃ij).

Substituting (3.9) into the above equality, we get

(4.5) Γ̃k
ij = Γk

ij +
1

4
g̃ks(gijθs + g̃ijθ

∗
s).

Using (3.14), (3.15) and (3.16) we find

(4.6) g̃skθs = −θ∗k, g̃skθ∗s = −1

2
θk, g̃skθ

s = −2θ∗k, g̃skθ
∗s = −θk.
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A Riemannian manifold with skew-circulant structures 9

Bearing in mind (4.5), the first and the second equality of (4.6), we calculate
the components of the tensor T = Γ̃−Γ of the affine deformation. They are as
follows:

(4.7) T k
ij = −1

4

(
gijθ

∗k +
1

2
g̃ijθ

k
)
.

For the components of the curvature tensors R̃ and R, it is well-known the
relation

R̃k
ijs = Rk

ijs +∇jT
k
is −∇sT

k
ij + T a

isT
k
aj − T a

ijT
k
as.

Then, taking into account (3.9), (3.16), (4.6) and (4.7), we calculate

R̃k
ijs =Rk

ijs −
1

4
gis(∇jθ

∗k − 1

4
θ∗j θ

∗k) +
1

4
gij(∇sθ

∗k − 1

4
θ∗sθ

∗k)

− 1

8
g̃is(∇jθ

k − 1

4
θjθ

∗k) +
1

8
g̃ij(∇sθ

k − 1

4
θsθ

∗k).

By contracting k = s in the latter equality, and having in mind (3.9), (3.14),
(3.16), (4.1), (4.2) and (4.6), we get

ρ̃ij = ρij +
1

4
gij∇sθ

∗s +
1

4
g̃ij∇sθ

s.(4.8)

Due to (3.14), (4.1), (4.2), (4.3) and (4.8) we obtain

ρ̃ij = ρij +
1

4
(τ̃∗ − τ)gij +

1

4
(τ̃ − τ∗)g̃ij ,

which is a local form of (4.4).

Further, we use the following statements for a special basis of TpM on
(M, g, S) that are established in [5].

(i) A basis of type {S3x, S2x, Sx, x} of TpM exists and it is called an S-basis.
In this case we say that the vector x induces an S-basis of TpM .

(ii) If a vector x induces an S-basis and φ is the angle between x and Sx,
then

g(x, Sx) = g(x, x) cosφ, g̃(x, x) = 2g(x, x) cosφ,(4.9)

and π
4 < φ < 3π

4 .
(iii) An orthogonal S-basis of TpM exists.
Now, we recall that the Ricci curvature, with respect to g, in the direction

of a nonzero vector x is the value

(4.10) r(x) =
ρ(x, x)

g(x, x)
.

Due to Theorem 4.1 we establish the following
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10 Dimitar Razpopov, Iva Dokuzova

Corollary 4.2. Let a vector x induce an S-basis of TpM and let φ be the angle
between x and Sx. If r and r̃ are the Ricci curvatures in the direction of x with
respect to the metrics g and g̃, then

(4.11) r̃(x) =
1

2 cosφ
r(x) +

1

8 cosφ
(τ̃∗ − τ) +

1

4
(τ̃ − τ∗), φ ̸= π

2
.

Proof. The proof follows directly from (4.4), (4.9) and (4.10).

In [5], a Riemannian manifold (M, g, S) is called almost Einstein if the
metrics g and g̃ satisfy

(4.12) ρ(x, y) = βg(x, y) + γg̃(x, y),

where β and γ are smooth functions on M .
It is known that a Riemannian manifold (M, g) is called Einstein if the

metric g satisfies

(4.13) ρ(x, y) = βg(x, y).

Proposition 4.3. Let the Levi-Civita connection ∇̃ of g̃ be a locally flat con-
nection on the manifold (M, g, S). Then the following statements are valid.

(i) (M, g, S) is an almost Einstein manifold, and the Ricci tensor ρ has the
form

(4.14) ρ(x, y) =
τ

4
g(x, y) +

τ∗

4
g̃(x, y).

(ii) If a vector x induces an S-basis, then the Ricci curvatures in the direc-
tion of the basis vectors are

(4.15) r(x) = r(Sx) = r(S2x) = r(S3x) =
τ

4
+

τ∗

2
cosφ,

where φ = ∠(x, Sx).

Proof. If ∇̃ is a locally flat connection, then R̃ = 0. From (4.2) and (4.3) it
follows ρ̃ = 0 and τ̃ = τ̃∗ = 0. Hence (4.4) implies (4.14). Therefore, according
to (4.12), we have that (M, g, S) is an almost Einstein manifold.

Since ρ is given by (4.14), using (2.2) and (2.5), we obtain

ρ(x, x) =ρ(Sx, Sx) = ρ(S2x, S2x) = ρ(S3x, S3x)

=
τ

4
g(x, x) +

τ∗

4
g̃(x, x).

(4.16)

Let a vector x induce an S-basis. Hence equalities (4.9), (4.10) and (4.16)
imply (4.15).

Corollary 4.4. Let (M, g, S) be an Einstein manifold. If a vector x induces
an S-basis, then the Ricci curvatures in the direction of the basis vectors are

r(x) = r(Sx) = r(S2x) = r(S3x) =
τ

4
.
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Proof. By comparing (4.14) and (4.13) we have that τ∗ vanishes. Thus the
above equalities follow directly by substituting τ∗ = 0 into (4.15).

In a similar way to Proposition 4.3 we prove the next

Proposition 4.5. Let the Levi-Civita connection ∇ of g be a locally flat con-
nection on the manifold (M, g̃, S). Then the following statements are valid.

(i) (M, g̃, S) is an almost Einstein manifold and the Ricci tensor ρ̃ has the
form

ρ̃(x, y) =
τ̃

4
g̃(x, y) +

τ̃∗

4
g(x, y).

(ii) If a vector x induces an S-basis, then the Ricci curvatures in the direc-
tion of the basis vectors are

r̃(x) = r̃(Sx) = r̃(S2x) = r̃(S3x) =
τ̃

4
+

τ̃∗

8 cosφ
, φ ̸= π

2
.

5. A locally conformal Kähler manifold (M, g, J)

The fundamental Kähler form of the structure (g, J) on an almost complex
manifold (M, g, J) is determined by

(5.1) J(x, y) = g(x, Jy)

and it is skew-symmetric, i.e. J(x, y) = −J(y, x) ([6]).
In this section we consider a Hermitian manifold (M, g, J) with a complex

structure J = S2.

Lemma 5.1. The nonzero components ∇iJjk = g((∇eiJ)ej , ek) of the funda-
mental tensor ∇J on the manifold (M, g, J) are given by

(5.2)

∇3J12 = −∇3J34 = ∇1J23 = −∇1J14 = 1
2 (B1 +B3 −A2),

∇1J34 = −∇1J12 = ∇3J23 = −∇3J14 = 1
2 (A4 +B1 −B3),

∇2J34 = −∇2J12 = ∇4J23 = −∇4J14 = 1
2 (B2 +B4 −A3),

∇4J12 = −∇4J34 = ∇2J23 = −∇2J14 = 1
2 (A1 +B4 −B2).

Proof. Because of (2.1), (2.3) and (5.1), we get that the matrix of the funda-
mental Kähler form is of the type:

(5.3) (Jik) =


0 B A B

−B 0 B A
−A −B 0 B
−B −A −B 0

 .

Applying the Christoffel symbols Γ, obtained by (2.3), (3.2) and (3.5), and the
components of the matrix (5.3) to equality

∇iJjk = ∂iJjk − Γa
ijJak − Γa

ikJaj ,

we calculate the nonzero components of ∇J , given in (5.2).
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12 Dimitar Razpopov, Iva Dokuzova

Immediately, we have the following

Corollary 5.2. The components ωk = gijg((∇eiJ)ej , ek) of the 1-form ω on
the manifold (M, g, J) are expressed by the equalities

ω1 =
1

D

(
A(B4 +B2 −A3) +B(2B3 −A2 −A4)

)
,

ω2 =
1

D

(
A(B3 −B1 −A4) +B(2B4 +A1 −A3)

)
,

ω3 =
1

D

(
A(A1 +B4 −B2) +B(−2B1 +A2 −A4)

)
,

ω4 =
1

D

(
A(A2 −B1 −B3) +B(−2B2 +A1 +A3)

)
,

(5.4)

Proof. The equalities (5.4) follow from (3.2) and (5.2) by direct computations.

Due to Lemma 5.1 and Corollary 5.2 we establish the following

Theorem 5.3. The manifold (M, g, J) is a locally conformal Kähler manifold.

Proof. Using (2.1), (2.3), (5.3), (5.4) and Lemma 5.1 we obtain

∇kJij =
1

2

(
gkiωj − gkjωi + Jkiω̃j − Jkjω̃i

)
, ω̃i = Ja

i ωa.(5.5)

The latter identity is the local form of (2.4), which is a defining condition of a
locally conformal Kähler manifold.

6. A Lie group with a structure (g, S)

Let G be a 4-dimensional real connected Lie group. Let g be the corre-
sponding Lie algebra with a basis {e1, e2, e3, e4} of left invariant vector fields.
We introduce a skew-circulant structure S and a metric g as follows:

Se1 = −e4, Se2 = e1, Se3 = e2, Se4 = e3;(6.1)

g(ei, ej) = δij ,(6.2)

where δij is the Kronecker delta.
Consequently the used basis {ei} is an orthonormal S-basis. Obviously,

(2.1) and (2.2) are valid and (g, S) is a structure of the considered type. We
denote the corresponding manifold by (G, g, S). Then the associated manifold
is (G, g, J), where J satisfies

(6.3) Je1 = −e3, Je2 = −e4, Je3 = e1, Je4 = e2.

The real four-dimensional indecomposable Lie algebras are classified by
Mubarakzyanov ([10]). This scheme seems to be the most popular (see [2]
and the references therein). We pay attention to the class {g4,5}, which repre-
sents an indecomposable Lie algebra, depending on two real parameters a and
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b. Actually, it induces a family of manifolds whose properties are functions of
a and b.

According to the definition of the class {g4,5}, we have that the nonzero
brackets are as follows ([2]):

(6.4) [e1, e4] = e1, [e2, e4] = ae2, [e3, e4] = be3, −1 ≤ b ≤ a ≤ 1, ab ̸= 0.

The well-known Koszul formula implies

2g(∇eiej , ek) = g([ei, ej ], ek) + g([ek, ei], ej) + g([ek, ej ], ei)

and, using (6.2) and (6.4), we obtain

(6.5)
∇e1e1 = −e4, ∇e1e4 = e1, ∇e2e2 = −ae4,
∇e2e4 = ae2, ∇e3e4 = be3, ∇e3e3 = −be4.

Furthermore, with the help of the above equalities we compute the components
of the tensor F on (G, g, S) and the components of the tensor ∇J on (G, g, J).
We find conditions under which F satisfies (3.8) and ∇J satisfies (2.4).

Proposition 6.1. If g belongs to {g4,5}, then the fundamental tensor F on
(G, g, S) satisfies the property (3.8) if and only if the condition a = b = 1
holds.

Proof. Bearing in mind (2.5), (2.6), (6.1), (6.2) and (6.5) we get the components
Fijk of F , θi of θ and θ∗i of θ∗ with respect to the basis {ei}. The nonzero of
them are the following:

(6.6)
F124 = −F113 = −F134 = −1, F111 = −F144 = −2,
F313 = F332 = F324 = −b, F333 = −F344 = 2b,
F212 = F214 = −F223 = F234 = −a.

(6.7)
θ1 = −2− a− b, θ3 = 2a+ b+ 1,
θ∗2 = 1

2 (1− b), θ∗4 = − 1
2 (2a+ 3b+ 3).

By equalities (2.5), (6.1) and (6.2), we find

(6.8)
g̃(e1, e1) = g̃(e2, e2) = g̃(e3, e3) = g̃(e4, e4) = 0,
g̃(e1, e3) = g̃(e2, e4) = 0,
g̃(e1, e2) = g̃(e2, e3) = g̃(e3, e4) = −g̃(e1, e4) = 1.

Hence (6.1), (6.2), (6.6), (6.7) and (6.8) imply that the condition (3.9) holds if
and only if a = b = 1.

Proposition 6.2. If g belongs to {g4,5}, then (G, g, J) belongs to the class of
locally conformal Kähler manifolds if and only if the condition a = b = 1 holds.
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14 Dimitar Razpopov, Iva Dokuzova

Proof. Bearing in mind (5.1), (6.2), (6.3) and (6.5) we obtain the components
∇iJjk of ∇J and ωi of ω with respect to the basis {ei}. The nonzero of them
are the following:

∇1J12 = −∇1J34 = 1, ∇3J32 = ∇3J14 = b, ω2 = b+ 1.(6.9)

By equalities (5.1), (6.1), (6.2) and (6.9), we get that the condition (5.5) holds
if and only if a = b = 1.

Remark 6.3. Obviously, if g is in {g4,5}, then (G, g, J) is not a Kähler manifold.

By virtue of Proposition 6.1 and Proposition 6.2, we immediately have the
following

Corollary 6.4. If g belongs to {g4,5}, then the fundamental tensor F on
(G, g, S) satisfies (3.8) if and only if (G, g, J) belongs to the class of locally
conformal Kähler manifolds.

Next we get

Proposition 6.5. Let (G, g, S) be a manifold with a Lie algebra g from the
class {g4,5}. If a = b = 1 are valid, then (G, g, S) is a non-flat Einstein
manifold with a negative scalar curvature τ = −12.

Proof. We calculate the components Rijks of the curvature tensor R with re-
spect to {ei}, having in mind the symmetries of R and the condition a = b = 1.
The nonzero of them are

R1212 = R1414 = R2323 = R3434 = R1313 = R2424 = 1.(6.10)

Using (4.1) and (6.10), we compute the components of ρ and the value of τ .
The nonzero of them are as follows:

ρ11 = ρ22 = ρ33 = ρ44 = −3, τ = −12.

Then, from (6.2), we get ρ = τ
4 g. Consequently, due to (4.13), the manifold

(G, g, S) is Einstein.

Remark 6.6. Lie groups with a Lie algebra in {g4,5} are studied in [4] as an
example of 4-dimensional Riemannian manifolds with circulant structures.

An example of a locally conformal Kähler manifold constructed on a Lie
group with a Lie algebra in {g4,5} is considered in [8]. The metric of the
manifold is indefinite but the condition a = b = 1 also exists.

The example of a 4-dimensional Riemannian manifold with skew-circulant
structures, constructed in this section, has similar properties to the above ex-
amples.



F
ir
st

on
li
n
e
-
A
u
g
u
st

25
,
20

23
.
D
ra
ft

ve
rs
io
n
-
A
u
gu

st
24

,
20

23
A Riemannian manifold with skew-circulant structures 15

References

[1] Angella, D., and Origlia, M. Locally conformally Kähler structures on
four-dimensional solvable Lie algebras. Complex Manifolds 7, 1 (2020), 1–35.

[2] Biggs, R., and Remsing, C. C. On the classification of real four-dimensional
Lie groups. J. Lie Theory 26, 4 (2016), 1001–1035.

[3] Cherevko, Y., Berezovski, V., Hinterleitner, I., and Smetanova, D. In-
finitesimal transformations of locally conformal Kähler manifolds. Mathematics
7, 8 (2019), 658.

[4] Dokuzova, I. On 3-dimensional almost Einstein manifolds with circulant struc-
tures. Turkish J. Math. 44, 4 (2020), 1484–1497.

[5] Dokuzova, I., and Razpopov, D. Four-dimensional almost Einstein manifolds
with skew-circulant stuctures. J. Geom. 111, 1 (2020), Paper No. 9, 18.

[6] Gray, A., and Hervella, L. M. The sixteen classes of almost Hermitian
manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123 (1980),
35–58.

[7] Huang, T. A note on Euler number of locally conformally Kähler manifolds.
Math. Z. 296, 3-4 (2020), 1725–1733.

[8] Manev, H. Almost hypercomplex manifolds with Hermitian-Norden metrics and
4-dimensional indecomposable real Lie algebras depending on two parameters.
C. R. Acad. Bulgare Sci. 73, 5 (2020), 589–598.

[9] Moroianu, A., Moroianu, S., and Ornea, L. Locally conformally Kähler
manifolds with holomorphic Lee field. Differential Geom. Appl. 60 (2018), 33–38.

[10] Mubarakzjanov, G. M. On solvable Lie algebras. Izv. Vysš. Učebn. Zaved.
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