ALMOST CONFORMAL TRANSFORMATION IN A CLASS OF RIEMANNIAN MANIFOLDS¹

Georgi Dzhelepov, Dimitar Razpopov, Iva Dokuzova

Abstract. We consider a 3-dimensional Riemannian manifold V with a metric g and an affinor structure q. The local coordinates of these tensors are circulant matrices. In V we define an almost conformal transformation. Using that definition we construct an infinite series of circulant metrics which are successively almost conformally related. In this case we get some properties.

 ${\bf Keywords:} \ {\rm Riemannian\ metric,\ affinor\ structure,\ almost\ conformal\ transformation}$

2010 Mathematics Subject Classification: 53C15, 53B20

1. Preliminaries

We consider a 3-dimensional Riemannian manifold M with a metric tensor g and two affine tensors q and S such that: their local coordinates form circulant matrices. So these matrices are as follows:

(1)
$$g_{ij} = \begin{pmatrix} A & B & B \\ B & A & B \\ B & B & A \end{pmatrix}, \quad A > B > 0,$$

where A and B are smooth functions of a point $p(x^1, x^2, x^3)$ in some $F \subset \mathbb{R}^3$,

(2)
$$q_i^{j} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad S_i^{j} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

We note by V the class of manifolds like M.

Let M be in V and ∇ be the connection of g. Let us give some results for M in V, obtained in [1].

(3)
$$q^3 = E; \quad g(qu, qv) = g(u, v), \quad u, v \in \chi M.$$

(4)
$$\nabla q = 0 \quad \Leftrightarrow \quad gradA = gradB.S.$$

(5)
$$0 < B < A \Rightarrow g \text{ is possitively defined.}$$

 $^{^1{\}rm This}$ work is partially supported by project RS09 - FMI - 003 of the Scientific Research Fund, Paisii Hilendarski University of Plovdiv, Bulgaria

2. Almost conformal transformation

Let M be in V. We note $f_{ij} = g_{ik}q_j^k + g_{jk}q_i^k$, i.e.

(6)
$$f_{ij} = \begin{pmatrix} 2B & A+B & A+B \\ A+B & 2B & A+B \\ A+B & A+B & 2B \end{pmatrix}$$

We calculate $det f_{ij} = 2(A - B)^2(A + 2B) \neq 0$, so we accept f_{ij} for local coordinates of another metric f. Further, we suppose α and β are two smooth functions in $F \subset \mathbb{R}^3$ and we construct the metric g_1 , as follows:

(7)
$$g_1 = \alpha g + \beta f.$$

We say that equation (7) define an almost conformal transformation, noting that if $\beta = 0$ then (7) implies the case of the classical conformal transformation in M [2].

From (1), (6) and (7) we get the local coordinates of g_1 :

(8)
$$g_{1,ij} = \begin{pmatrix} \alpha A + 2\beta B & \beta A + (\alpha + \beta)B & \beta A + (\alpha + \beta)B \\ \beta A + (\alpha + \beta)B & \alpha A + 2\beta B & \beta A + (\alpha + \beta)B \\ \beta A + (\alpha + \beta)B & \beta A + (\alpha + \beta)B & \alpha A + 2\beta B \end{pmatrix}$$

We see that f_{ij} and $g_{1,ij}$ are both circulant matrices.

Theorem 2.1. Let M be a manifold in V, also g and g_1 be two metrics of M, related by (7). Let ∇ and $\dot{\nabla}$ be the corresponding connections of g and g_1 , and $\nabla q = 0$. Then $\dot{\nabla} q = 0$ if and only if, when

(9)
$$grad \alpha = grad \beta.S.$$

Proof. At first we suppose (9) is valid. Using (9) and (4) we can verify that the following identity is true:

(10)
$$grad(\alpha A + 2\beta B) = grad(\beta A + (\alpha + \beta)B).S$$

The identity (10) is analogue to (4), and consequently we conclude $\dot{\nabla}q = 0$.

Inversely, if $\nabla q = 0$ then analogously to (4) we have (10). Now (4) and (10) imply (9). So the theorem is proved.

Note. We see that (10) is a system of partial differential equations. In this case we know that this system has a solution [3].

Let w = w(x(p), y(p), z(p)) be an arbitrary vector in T_pM , $p \in M$, $M \subset V$, such that $qw \neq w$. For the metric g of M we suppose 0 < B < A, i.e. g is positively defined (see (5)).

Let φ be the angle between w and qw with respect to g. Then thank's to (1), (2) and (3) we get $\cos\varphi = \frac{g(w, qw)}{g(w, w)}$, and we note that $\varphi \in (0, \frac{2\pi}{3})$ [1].

Lemma 2.2. Let g_1 be the metric given by (7). If $0 < \beta < \alpha$ and g is positively defined, then g_1 is also positively defined.

Proof. For g_1 we have that $\alpha A + 2\beta B - (\beta A + (\alpha + \beta)B) = (\alpha - \beta)(A - B) > 0$. Analogously to (6) we state that g_1 is positively defined.

Lemma 2.3. Let w = w(x(p), y(p), z(p)) be in $T_pM, p \in M, M \subset V$, $qw \neq w$. Let g and g_1 be the metrics of M, related by (7). Then we have

(11)
$$g_1(w,w) = \alpha g(w,w) + 2\beta g(w,qw)$$
$$g_1(w,qw) = \beta g(w,w) + (\alpha + \beta)g(w,qw).$$

Proof. Using (1) and (2) we find

(12)
$$g(w,w) = A(x^2 + y^2 + z^2) + 2B(xy + yz + zx)$$
$$g(w,qw) = B(x^2 + y^2 + z^2) + (A+B)(xy + yz + zx).$$

Now, we use (8) and (12) after some computations we get (11).

Theorem 2.4. Let w = w(x(p), y(p), z(p)) be a vector in T_pM , $p \in M$, $M \subset V$, $qw \neq w$. Let g and g_1 be two positively defined metrics of M, related by (7). If φ and φ_1 are the angles between w and qw, with respect to g and g_1 respectively, then the following equation is true

(13)
$$\cos\varphi_1 = \frac{\beta + (\alpha + \beta)\cos\varphi}{\alpha + 2\beta\cos\varphi}.$$

Proof. Since g and g_1 are both positively defined metrics we can calculate $\cos \varphi$ and $\cos \varphi_1$, respectively [2]. Then by using (11) from Lemma 2.2 and Lemma 2.3 we get (13).

We note $\varphi \in (0, \frac{2\pi}{3})$. Theorem 2.4 implies immediately the assertions:

Corollary 2.5. If φ_1 is the angle between w and qw with respect to g_1 then $\varphi_1 \in (0, \frac{2\pi}{3})$.

Corollary 2.6. Let φ and φ_1 be the angles between w and qw with respect to g and g_1 . Then

1)
$$\varphi = \frac{\pi}{2}$$
 if and only if when $\varphi_1 = \arccos \frac{\beta}{\alpha}$;
2) $\varphi_1 = \frac{\pi}{2}$ if and only if when $\varphi = \arccos \left(-\frac{\beta}{\alpha+\beta}\right)$

Further, we consider an infinite series of the metrics of M in V as follows:

$$g_0, g_1, g_2, \ldots, g_n, \ldots$$

where

(14)
$$g_0 = g$$
, $g_n = \alpha g_{n-1} + \beta f_{n-1}$, $f_{n-1,is} = g_{n-1,ia} q_s^a + g_{n-1,sa} q_i^a$, $0 < \beta < \alpha$.

By the method of the mathematical induction we can see that the matrix of every g_n is circulant one and every g_n is positively defined.

Theorem 2.7. Let w = w(x(p), y(p), z(p)) be in $T_pM, p \in M, M \subset V$, $qw \neq w$. Let φ_n be the angle between w and qw with respect to metric g_n from (14). Then the infinite series:

$$\varphi_0, \varphi_1, \varphi_2, \ldots, \varphi_n, \ldots$$

is converge and $\lim \varphi_n = 0$.

Proof. Using the method of the mathematical induction and Theorem 2.4 we obtain

(15)
$$\cos\varphi_n = \frac{\beta + (\alpha + \beta)\cos\varphi_{n-1}}{\alpha + 2\beta\cos\varphi_{n-1}}$$

as well as $\varphi_n \in (0, \frac{2\pi}{3})$. From (15) we get

(16)
$$\cos\varphi_n - \cos\varphi_{n-1} = \frac{\beta(1 - \cos\varphi_{n-1})(1 + 2\cos\varphi_{n-1})}{\alpha + 2\beta\cos\varphi_{n-1}}$$

The equation (16) implies $\cos \varphi_n > \cos \varphi_{n-1}$, so the series $\{\cos \varphi_n\}$ is increasing one and since $\cos \varphi_n < 1$ then it is converge. From (15) we have $\lim \cos \varphi_n = 1$, so $\lim \varphi_n = 0$.

References

- G. DZHELEPOV, I. DOKUZOVA, D. RAZPOPOV: On a three dimensional Riemannian manifold with an additional structure, arXiv:math.DG/ 0905.0801.
- [2] K. YANO: Differential geometry, New York, Pergamont press, 1965.
- [3] H. HRISTOV: Mathematical methods in physics, Sofia, Science and Art, 1967 (In Bulgarian).

Georgi Dzhelepov	Iva Dokuzova
Department of Mathematics and Physics	Faculty of Mathematics and Informatics
Agricultural University of Plovdiv	University of Plovdiv
12 Mendeleev Blvd.	236 Bulgaria Blvd.
4000 Plovdiv, Bulgaria	4003 Plovdiv, Bulgaria
	e-mail: dokuzova@uni-plovdiv.bg

Dimitar Razpopov Department of Mathematics and Physics Agricultural University of Plovdiv 12 Mendeleev Blvd. 4003 Plovdiv, Bulgaria e-mail: drazpopov@qustyle.bg