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Abstract. We consider a 3-dimensional Riemannian manifold V with a
metric g and an affinor structure q. The local coordinates of these tensors are
circulant matrices. In V we define an almost conformal transformation. Using
that definition we construct an infinite series of circulant metrics which are
successively almost conformaly related. In this case we get some properties.
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1. Preliminaries

We consider a 3-dimensional Riemannian manifold M with a metric ten-
sor g and two affine tensors q and S such that: their local coordinates form
circulant matrices. So these matrices are as follows:

(1) gij =




A B B
B A B
B B A


 , A > B > 0,

where A and B are smooth functions of a point p
(
x1, x2, x3

)
in some F ⊂ R3,

(2) q.j
i =




0 1 0
0 0 1
1 0 0


 , S.j

i =



−1 1 1
1 −1 1
1 1 −1


 .

We note by V the class of manifolds like M .
Let M be in V and ∇ be the connection of g. Let us give some results

for M in V , obtained in [1].

(3) q3 = E; g(qu, qv) = g(u, v), u, v ∈ χM.

(4) ∇q = 0 ⇔ gradA = gradB.S.

(5) 0 < B < A ⇒ g is possitively defined.

1This work is partially supported by project RS09 - FMI - 003 of the Scientific Research
Fund, Paisii Hilendarski University of Plovdiv, Bulgaria
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2. Almost conformal transformation

Let M be in V . We note fij = gikq
k
j + gjkq

k
i , i.e.

(6) fij =




2B A + B A + B
A + B 2B A + B
A + B A + B 2B


 .

We calculate detfij = 2(A − B)2(A + 2B) 6= 0, so we accept fij for local
coordinates of another metric f . Further, we suppose α and β are two smooth
functions in F ⊂ R3 and we construct the metric g1, as follows:

(7) g1 = α.g + β.f.

We say that equation (7) define an almost conformal transformation, noting
that if β = 0 then (7) implies the case of the classical conformal transformation
in M [2].

From (1), (6) and (7) we get the local coordinates of g1:

(8) g1,ij =




αA + 2βB βA + (α + β)B βA + (α + β)B
βA + (α + β)B αA + 2βB βA + (α + β)B
βA + (α + β)B βA + (α + β)B αA + 2βB


 .

We see that fij and g1,ij are both circulant matrices.

Theorem 2.1. Let M be a manifold in V , also g and g1 be two metrics
of M , related by (7). Let ∇ and ∇̇ be the corresponding connections of g and
g1, and ∇q = 0. Then ∇̇q = 0 if and only if, when

(9) gradα = grad β.S.

Proof. At first we suppose (9) is valid. Using (9) and (4) we can verify that
the following identity is true:

(10) grad(αA + 2βB) = grad
(
βA + (α + β)B

)
.S

The identity (10) is analogue to (4), and consequently we conclude ∇̇q = 0.
Inversely, if ∇̇q = 0 then analogously to (4) we have (10). Now (4) and (10)

imply (9). So the theorem is proved.
¤

Note. We see that (10) is a system of partial differential equations. In
this case we know that this system has a solution [3].

Let w = w
(
x(p), y(p), z(p)

)
be an arbitrary vector in TpM , p ∈ M ,

M ⊂ V , such that qw 6= w. For the metric g of M we suppose 0 < B < A,
i.e. g is positively defined (see (5)).

Let ϕ be the angle between w and qw with respect to g. Then thank’s

to (1), (2) and (3) we get cosϕ =
g(w, qw)
g(w,w)

, and we note that ϕ ∈ (0,
2π

3
) [1].

Lemma 2.2. Let g1 be the metric given by (7). If 0 < β < α and g is
positively defined, then g1 is also positively defined.
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Proof. For g1 we have that αA+2βB− (βA+(α+β)B = (α−β)(A−B) > 0.
Analogously to (6) we state that g1 is positively defined.

¤

Lemma 2.3. Let w = w
(
x(p), y(p), z(p)

)
be in TpM , p ∈ M , M ⊂ V ,

qw 6= w. Let g and g1 be the metrics of M , related by (7). Then we have

g1(w,w) = αg(w, w) + 2βg(w, qw)(11)

g1(w, qw) = βg(w, w) + (α + β)g(w, qw).

Proof. Using (1) and (2) we find

g(w, w) = A(x2 + y2 + z2) + 2B(xy + yz + zx)(12)

g(w, qw) = B(x2 + y2 + z2) + (A + B)(xy + yz + zx).

Now, we use (8) and (12) after some computations we get (11).
¤

Theorem 2.4. Let w = w
(
x(p), y(p), z(p)

)
be a vector in TpM , p ∈ M ,

M ⊂ V , qw 6= w. Let g and g1 be two positively defined metrics of M , related
by (7). If ϕ and ϕ1 are the angles between w and qw, with respect to g and g1

respectively, then the following equation is true

(13) cosϕ1 =
β + (α + β)cosϕ

α + 2βcosϕ
.

Proof. Since g and g1 are both positively defined metrics we can calculate
cosϕ and cosϕ1, respectively [2]. Then by using (11) from Lemma 2.2 and
Lemma 2.3 we get (13).

¤

We note ϕ ∈ (0,
2π

3
). Theorem 2.4 implies immediately the assertions:

Corollary 2.5. If ϕ1 is the angle between w and qw with respect to g1

then ϕ1 ∈ (0,
2π

3
).

Corollary 2.6. Let ϕ and ϕ1 be the angles between w and qw with
respect to g and g1. Then

1) ϕ =
π

2
if and only if when ϕ1 = arccos

β

α
;

2) ϕ1 =
π

2
if and only if when ϕ = arccos

(
− β

α + β

)
.

Further, we consider an infinite series of the metrics of M in V as follows:

g0, g1, g2, . . . , gn, . . .

where

(14) g0 = g, gn = αgn−1+βfn−1, fn−1,is = gn−1,iaq
a
s +gn−1,saq

a
i , 0 < β < α.
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By the method of the mathematical induction we can see that the matrix of
every gn is circulant one and every gn is positively defined.

Theorem 2.7. Let w = w
(
x(p), y(p), z(p)

)
be in TpM , p ∈ M , M ⊂ V ,

qw 6= w. Let ϕn be the angle between w and qw with respect to metric gn

from (14). Then the infinite series:

ϕ0, ϕ1, ϕ2, . . . , ϕn, . . .

is converge and limϕn = 0.

Proof. Using the method of the mathematical induction and Theorem 2.4 we
obtain

(15) cosϕn =
β + (α + β) cos ϕn−1

α + 2β cosϕn−1

as well as ϕn ∈ (0, 2π
3 ). From (15) we get

(16) cosϕn − cosϕn−1 =
β(1− cosϕn−1)(1 + 2 cosϕn−1)

α + 2β cosϕn−1
.

The equation (16) implies cosϕn > cosϕn−1, so the series {cosϕn} is in-
creasing one and since cosϕn < 1 then it is converge. From (15) we have
lim cosϕn = 1, so limϕn = 0.

¤
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