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FOUR-DIMENSIONAL RIEMANNIAN MANIFOLDS

WITH TWO CIRCULANT STRUCTURES*

Dimitar Razpopov

We consider a class (M, g, q) of four-dimensional Riemannian manifolds M , where
beside the metric g there is an additional structure q, whose fourth power is the
unit matrix. We use the existence of a local coordinate system for which coordinates
of g and q are circulant matrices. In this system q has constant coordinates and q

is an isometry with respect to g. By the special identity for the curvature tensor R

generated by the connection ∇ of g we define a subclass of (M, g, q). For any (M, g, q)
in this subclass we get some assertions for the sectional curvatures of two-planes. We
get the necessary and sufficient condition for g such that q is parallel with respect
to ∇.

1. Introduction. The main purpose of the present paper is to continue the consid-
erations on some Riemannian manifolds using the existence of an useful local circulant
coordinate system analogously to [3], [4], [5].

In Section 2 we introduce four-dimensional differentiable manifold M with a Rieman-
nian metric g whose matrix in local coordinates is a special circulant matrix. Further-
more, we consider an additional structure q on M with q4 = id such that its matrix in
local coordinates is also circulant. Thus, the structure q is an isometry with respect to g.
We denote by (M, g, q) the manifold M equipped with the metric g and the structure q.
In Section 3 in Theorem 3.4 we obtain that an orthogonal basis of type {x, qx, q2x, q3x}
exists in the tangent space of a manifold (M, g, q). In Section 4 we establish relations
between the sectional curvatures of some special 2-planes in the tangent space. In Sec-
tion 5 we obtain a necessary and sufficient condition for q to be parallel with respect to
the Riemannian connection of g.

2. Preliminaries. Let M be a four-dimensional manifold with a Riemannian metric
g. Let the local components of the metric g at an arbitrary point p(X1, X2, X3, X4) ∈ M

form the following circulant matrix:

(1) (gij) =









A B C B

B A B C

C B A B

B C B A









,

where A = A(p), B = B(p), C = C(p) are smooth functions.
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We suppose

(2) 0 < B < C < A .

Then the conditions to be a positive definite metric g are satisfied:
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= (A− C)2
(

(A+ C)2 − 4B2

)

> 0.

We denote by (M, g) the manifold M equipped with the Riemannian metric g defined
by (1) with conditions (2).

Let q be an endomorphism in the tangent space TpM of the manifold (M, g). We
suppose the local coordinates of q are given by the circulant matrix

(3) (qsi ) =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









.

Then q satisfies

(4) q4 = id, q2 6= ±id.

We denote by (M, g, q) the manifold (M, g) equipped with the structure q, defined
by (3).

Further, x, y, z, u will stand for arbitrary elements of the algebra on the smooth vector
fields on M or vectors in the tangent space TpM . The Einstein summation convention
is used, the range of the summation indices being always {1, 2, 3, 4}.

From (1) and (3) we get immediately the following
Theorem 2.1. The structure q of the manifold (M, g, q) is an isometry with respect

to the metric g, i.e.

(5) g(qx, qy) = g(x, y).

3. Orthogonal q-bases of TpM .
Definition 3.1. A basis of type {x, qx, q2x, q3x} of TpM is called a q-basis. In this

case we say that the vector x induces a q-basis of TpM .

Obviously, we have the following
Proposition 3.2. A vector x = (x1, x2, x3, x4) induces a q-basis of TpM if and only

if

(6)
(

(x1 − x3)2 + (x2 − x4)2
)(

(x1 + x3)2 − (x2 + x4)2
)

6= 0

Proof. If x = (x1, x2, x3, x4) ∈ TpM , then qx = (x2, x3, x4, x1),
q2x = (x3, x4, x1, x2), q3x = (x4, x1, x2, x3). The determinant of coordinates of the
vectors x, qx, q2x, q3x is just the left side of (6). The vectors x, qx, q2x, q3x are linearly
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independent which imply (6). �

Theorem 3.3. If x = (x1, x2, x3, x4) induces a q-basis of TpM , then for the angles

<) (x, qx), <) (x, q2x), <) (qx, q2x), <) (qx, q3x), <) (x, q3x) and <) (q2x, q3x) we have

<) (x, qx) =<) (qx, q2x) =<) (x, q3x) =<) (q2x, q3x), <) (x, q2x) =<) (qx, q3x).

Proof. Evidently from (5) we have g(q3x, q3y) = g(q2x, q2y) = g(qx, qy) = g(x, y).
Then from the well known formula

cos <) (x, y) =
g(x, y)

√

g(x, x)
√

g(y, y)

we get cos <) (x, qx) = cos <) (qx, q2x) = cos <) (x, q3x) = cos <) (q2x, q3x) and
cos <) (x, q2x) = cos <) (qx, q3x). �

Theorem 3.4. Let x induce a q-basis in TpM of a manifold (M, g, q). Then there

exists an orthogonal q-basis {x, qx, q2x, q3x} in TpM .

Proof. Let {x, qx, q2x, q3x} be a q-basis in TpM of a manifold (M, g, q). Then
the triples of vectors {x, qx, q2x}; {x, qx, q3x}; {x, q2x, q3x}; {qx, q2x, q3x} form four
congruent pyramids. We consider for example one of them formed by {x, qx, q2x}. Its

first face is isosceles triangle with angles <) (x, qx) = ϕ,
π − ϕ

2
,
π − ϕ

2
. Its second face is

isosceles triangle with angles <) (qx, q2x) = ϕ,
π − ϕ

2
,
π − ϕ

2
. Its third face is isosceles

triangle with angles <) (x, q2x) = θ,
π − θ

2
,
π − θ

2
. The fourth face is isosceles triangle

with angles <) (x − qx, q2x − qx) = φ,
π − φ

2
and

π − φ

2
. From the Cosine Rule applied

to the fourth side and from (5) we get

2g(x, x)(1− cos θ) = 4g(x, x)(1− cosϕ) cosφ,

and then

cosφ =
1− 2 cosϕ+ cosθ

2(1− cosϕ)
.

From the above and −1 < cosφ < 1 we find

4 cosϕ− cos θ < 3.

The angles ϕ =
π

2
, θ =

π

2
satisfy the above inequality. Having in mind Theorem 3.3 we

prove that there exists an orthogonal q-basis in TpM . �

4. Curvature properties of (M, g, q). Let ∇ be the Riemannian connection of g
for a manifold (M, g, q). Let R be the curvature tensor field of ∇ of type (0, 4), and R

satisfies the identity

(7) R(x, y, qz, qu) = R(x, y, z, u).

We note, that by identities like (7) in [1], [2] the subclass of almost complex manifolds
with Norden metric and the subclass of almost Hermitian manifolds respectively have
been defined.

The sectional curvature µ of 2-plane {x, y} from TpM is expressed by the formula [6]

(8) µ(x, y) =
R(x, y, x, y)

g(x, x)g(y, y)− g2(x, y)
.

Theorem 4.1. Let (M, g, q) be a manifold with property (7). Let x induce a q-basis
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in TpM . Then for the sectional curvature µ of 2-planes we have

(9) µ(x, qx) = µ(qx, q2x) = µ(q2x, q3x) = µ(q3x, x),

(10) µ(x, q2x) = µ(qx, q3x) = 0.

Proof. From (7) we find

(11) R(x, y, z, u) = R(x, y, qz, qu) = R(x, y, q2z, q2u) = R(x, y, q3z, q3u).

In (11) we substitute

1) u for qx, y for qx and z for x;

2) z for x, y for q2x and u for q2x;

3) z for x, y for q3x and u for q3x
and obtain respectively

(12) R(x, qx, x, qx) = R(x, qx, qx, q2x) = R(x, qx, q2x, q3x) = R(x, qx, q3x, qx),

(13) R(x, q2x, x, q2x) = R(x, q2x, qx, q3x) = R(x, q2x, q2x, x) = R(x, q2x, q3x, x),

(14) R(x, q3x, x, q3x) = R(x, q3x, qx, x) = R(x, q3x, q2x, x) = R(x, q3x, q3x, q2x).

Using (12), (14) and (8) we get (9) and using (13) and (8) we get (10). �

We see that every 2-plane {x, qx} ∈ TpM has only two q-bases {x, qx} or {−x,−qx}.
So the sectional curvature µ of {x, qx} is a function of the <) (x, qx) = ϕ, i.e. µ(x, qx) =
µ(ϕ).

Proposition 4.2. Let (M, g, q) be a manifold with property (7) and u induce a q-

basis in TpM . If {x, qx, q2x, q3x} is an orthonormal q-basis in TpM , then the sectional

curvature satisfies

(15) µ(ϕ) =
1

1− cos2 ϕ
µ(

π

2
),

where ϕ =<) (u, qu).

Proof. Let u = αx + βqx + γq2x + δq3x, where α, β, γ, δ ∈ R. Then qu =
δx+αqx+βq2x+γq3x, q2u = γx+δqx+αq2x+βq3x and q3u = βx+γqx+δq2x+αq3x.
We calculate

(16) cosϕ = αβ + αδ + βγ + δγ; cos θ = 2αγ + 2βδ,

where θ =<) (u, q2u). Then using the linear properties of the curvature tensor R and
having in mind (12)–(14), we obtain

R(u, qu, u, qu) =
(

(α2 + γ2 − 2βδ)2 + (β2 + δ2 − 2γα)2

+ 2(α2 + γ2 − 2βδ)(β2 + δ2 − 2γα)
)

R(x, qx, x, qx).
(17)

From (16) we get

(1− cos θ)2R(u, qu, u, qu) =
(

(α2 + γ2 − 2βδ)2 + (β2 + δ2 − 2γα)2

+ 2(α2 + γ2 − 2βδ)(β2 + δ2 − 2γα)
)

R(x, qx, x, qx)
(18)

We substitute (17) and (18) in (8) and obtain (15). �

5. Parallelity of the circulant structure q.
Theorem 5.1. Let ∇ be the Riemannian connection of g of a manifold (M, g, q).

Then the structure q is parallel with respect to the Riemannian connection ∇ if and only
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if

(19) gradA = (gradC)q2 , 2gradB = (gradC)(q + q3),

where gradA, gradB and gradC are gradients of the functions A, B and C.

Proof. Let the structure q be parallel with respect to the Riemannian connection ∇
of a manifold (M, g, q), i.e. ∇q = 0. Let Γs

ij be the Christoffel symbols of ∇. If ∇q = 0,
then

(20) ∇iq
s
j = ∂iq

s
j + Γs

ikq
k
j − Γk

ijq
s
k = 0.

From (3) and (20) we get

(21) Γs
ikq

k
j = Γk

ijq
s
k.

We denote

(22) Ai =
∂A

∂X i
, Bi =

∂B

∂X i
, Ci =

∂C

∂X i
,

where A, B and C are the functions from (1).

We find the inverse matrix of (gij) as follows:

(23) (gij) =
1

D









A B C B

B A B C

C B A B

B C B A









, D = (A− C)((A + C)2 − 4B2),

where A = A(A+ C)− 2B2, B = B(C −A), C = 2B2 − C(A+ C).

Using (1), (3), (21)–(23) and the well known identities

(24) 2Γs
ij = gas(∂igaj + ∂jgai − ∂agij),

after a long computation we get the following system:

A4 −B1 +B3 − C2 = 0,

A4 +B1 −B3 − C2 = 0,

2A2 +A4 − 3B1 −B3 + C2 = 0,

A3 +B2 −B4 − C1 = 0,

A3 −B2 +B4 − C1 = 0,

A2 −B1 +B3 − C4 = 0,

A2 +B1 −B3 − C4 = 0,

A4 −B1 + 3B3 + C2 + 2C4 = 0,

A2 + 2A4 − 3B1 −B3 + C4 = 0,

A2 + 2A4 −B1 − 3B3 + C4 = 0,

A1 + 2A3 − 3B2 −B4 + C3 = 0,

A1 −B2 +B4 − C3 = 0,

A3 −B2 − 3B4 + C1 + 2C3 = 0,

A1 −B2 − 3B4 + 2C1 + C3 = 0,

2A1 +A3 −B2 − 3B4 + C1 = 0,

A2 −B1 − 3B3 + 2C2 + C4 = 0.
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The last system implies

A1 = C3, A2 = C4, A3 = C1, A4 = C2, B1 = B3,

B2 = B4, 2B1 = C4 + C2, 2B2 = C1 + C3.(25)

Then we obtain that (19) is valid.
Inversely, let (19) be valid. We can verify that (25) is valid, too. The identities (25)

imply (21) and consequently (20) is true. So ∇q = 0. �

Proposition 5.2. Let (M, g, q) be a manifold with parallel structure q with respect of

g. Then (M, g, q) is a manifold with property (7).
Proof. The condition ∇q = 0 implies ∇iq

j
s = 0. The integrability condition of this

system is

(26) Ra
jklq

s
a = Rs

aklq
a
j ,

where Ra
jkl are the local coordinates of R. From (26) we find

(27) Rajklq
a
.s = Rsaklq

a
j..

We get qa.s are the local coordinates of q3. So (27) implies

R(q3u, v, w, t) = R(u, qv, w, t)

from which (7) follows. Then (M, g, q) has the property (7). �
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ЧЕТИРИМЕРНИ РИМАНОВИ МНОГООБРАЗИЯ С ДВЕ

ЦИРКУЛАНТНИ СТРУКТУРИ

Димитър Руменов Разпопов

Разглеждаме един клас (M, g, q) на четиримерни риманови многообразия M ,

където освен с метрика g многообразието е снабдено с допълнителна структура

q, чиято четвърта степен е идентитетът. Използваме съществуването на локална

координатна система, в която координатите на g и q са циркулантни матрици.

В тази координатна система координатите на q са константи и q е изометрия по

отношение на g. Чрез специално тъждество за тензора на кривина R породен

от свързаността ∇ на g дефинираме един подклас (M, g, q). За всяко (M, g, q)
от този подклас получаваме твърдения за секционните кривини на двумерни

q-площадки. Намираме необходимо и достатъчно условие за g, така че q да е

паралелна по отношение на ∇.
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