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We consider a class (M, g, q) of four-dimensional Riemannian manifolds M, where
beside the metric g there is an additional structure g, whose fourth power is the
unit matrix. We use the existence of a local coordinate system for which coordinates
of g and ¢ are circulant matrices. In this system ¢ has constant coordinates and ¢
is an isometry with respect to g. By the special identity for the curvature tensor R
generated by the connection V of g we define a subclass of (M, g, q). For any (M, g,q)
in this subclass we get some assertions for the sectional curvatures of two-planes. We
get the necessary and sufficient condition for g such that ¢ is parallel with respect
to V.

1. Introduction. The main purpose of the present paper is to continue the consid-
erations on some Riemannian manifolds using the existence of an useful local circulant
coordinate system analogously to [3], [4], [5].

In Section 2 we introduce four-dimensional differentiable manifold M with a Rieman-
nian metric ¢ whose matrix in local coordinates is a special circulant matrix. Further-
more, we consider an additional structure ¢ on M with ¢* = id such that its matrix in
local coordinates is also circulant. Thus, the structure ¢ is an isometry with respect to g.
We denote by (M, g,q) the manifold M equipped with the metric g and the structure q.
In Section 3 in Theorem 3.4 we obtain that an orthogonal basis of type {z, qz, ¢°z, ¢*x}
exists in the tangent space of a manifold (M, g,q). In Section 4 we establish relations
between the sectional curvatures of some special 2-planes in the tangent space. In Sec-
tion 5 we obtain a necessary and sufficient condition for ¢ to be parallel with respect to
the Riemannian connection of g.

2. Preliminaries. Let M be a four-dimensional manifold with a Riemannian metric
g- Let the local components of the metric g at an arbitrary point p(X*!, X%, X3, X*) e M
form the following circulant matrix:

A B C B
B A B C
B C B A

where A = A(p), B = B(p),C = C(p) are smooth functions.

*2010 Mathematics Subject Classification: 53C15, 53B20.
Key words: Riemannian metric, curvature properties, circulant matrix.

179



We suppose

(2) 0<B<C<A.
Then the conditions to be a positive definite metric g are satisfied:
A0, }A B‘(AB)(A+B)>O,

B A

A B C
B A B:(A—C)(A(C+A)_2B2)>o,
C B A

C
b =a—or(arop-am) >0
B

Sy Ru S
QW =W
=T QW

We denote by (M, g) the manifold M equipped with the Riemannian metric g defined
by (1) with conditions (2).

Let ¢ be an endomorphism in the tangent space T, M of the manifold (M, g). We
suppose the local coordinates of ¢ are given by the circulant matrix

01 00
o |0 10
1 0 0 0

Then q satisfies
(4) ¢t =1id, ¢ # +id.

We denote by (M, g,q) the manifold (M, g) equipped with the structure ¢, defined
by (3).

Further, x,y, z, u will stand for arbitrary elements of the algebra on the smooth vector
fields on M or vectors in the tangent space T, M. The Einstein summation convention
is used, the range of the summation indices being always {1, 2, 3,4}.

From (1) and (3) we get immediately the following

Theorem 2.1. The structure q of the manifold (M, g, q) is an isometry with respect
to the metric g, i.e.

() 9(qz, qy) = 9(z,y).

3. Orthogonal g-bases of T, M.

Definition 3.1. A basis of type {z, ¢z, ¢*x, ¢>z} of TpM is called a g-basis. In this
case we say that the vector x induces a q-basis of T, M.

Obviously, we have the following

Proposition 3.2. A vector x = (21, 22,23, 2) induces a q-basis of T,M if and only

if
(6) ((xl 23?2 4 (2% — ac4)2> ((xl +a3)? — (2 + ac4)2> 40
Proof. Ifz = (z!,2% 23, 2%) € T,M, then gz = (2%, 23, 2%, 21),
Pr = (23,24, 2, 2?), ¢®z = (2%, 2%,2%,23). The determinant of coordinates of the

vectors x, qx, ¢?z, ¢>x is just the left side of (6). The vectors x, qx, ¢*x, ¢*>z are linearly
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independent which imply (6). O

Theorem 3.3. If x = (z',2% 23, 2%) induces a g-basis of T,M, then for the angles
(@, q2), Xa,q20), gz, %), F(am ¢x), ¥(x,¢x) and X(P, ¢*x) we have

*(x,q7) =¥(qz, ¢*z) =%(z, ¢°x) =¥ (¢*x,¢’z),  %(z.¢°x) =¥ (g, ¢*2).

Proof. Evidently from (5) we have g(¢®z, ¢®y) = g(¢*z, ¢*y) = g(qz, qy) = g(z,y).
Then from the well known formula

9(z,y)
9(x,2)\/9(y,y)
we get cos ¥(z,qz) = cos X(qz, ¢*r) = cos ¥(z,¢*z) = cos ¥(¢*w, ¢>x) and
cos ¥X(x,¢*x) = cos X(qr,¢*z). O

Theorem 3.4. Let x induce a g-basis in TyM of a manifold (M,g,q). Then there
exists an orthogonal q-basis {x, qx,¢*x, >z} in T, M.

Proof. Let {z,qz,¢*z,¢>z} be a g-basis in T,M of a manifold (M, g,q). Then
the triples of vectors {z,qz,¢?z}; {z,qx,¢3z}; {z,¢*x,¢*x}; {qx, ?z,¢®x} form four
congruent pyramids. We consider for example one of them formed by {x, ¢z, ¢>z}. Its

cos ¥(x,y) =

first face is isosceles triangle with angles <(z, gz) = ¢, %, % Its second face is

isosceles triangle with angles ¥(qz,¢*r) = ¢, T ; 90, T ; ? . Tts third face is isosceles
-0 w—80

triangle with angles ¥(z, ¢?x) = 6, T 5 T 5 The fourth face is isosceles triangle

m—¢ and = ¢. From the Cosine Rule applied

with angles ¥(x — gz, ¢*r — qx) = ¢,
to the fourth side and from (5) we get
2¢g(x,z)(1 — cos0) = 4g(z, x)(1 — cos ) cos ¢,

and then
1 —2cosy + cosf

cos ¢ = 2(1 — cosy)

From the above and —1 < cos¢ < 1 we find
4cosp —cosf < 3.

The angles ¢ = g, 0= g satisfy the above inequality. Having in mind Theorem 3.3 we

prove that there exists an orthogonal g-basis in T,M. [0

4. Curvature properties of (M, g,q). Let V be the Riemannian connection of g
for a manifold (M, g,q). Let R be the curvature tensor field of V of type (0,4), and R
satisfies the identity

(7) R(z,y,92,qu) = R(z,y, 2, u).
We note, that by identities like (7) in [1], [2] the subclass of almost complex manifolds

with Norden metric and the subclass of almost Hermitian manifolds respectively have
been defined.

The sectional curvature p of 2-plane {x,y} from T, M is expressed by the formula [6]
R(Z’ y7 x? y)
(8) plz,y) = :
9(z, 2)g(y.y) — g*(x,y)
Theorem 4.1. Let (M, g,q) be a manifold with property (7). Let x induce a q-basis
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in Tp,M. Then for the sectional curvature p of 2-planes we have

(9) pw(x, qr) = plqx, i) = p(@*x, ¢*x) = pl¢Pz, x),
(10) (@, ¢*x) = pqz, ¢*z) = 0.
Proof. From (7) we find
(11) R(z,y,2,u) = R(z,y,q2,qu) = R(z,y,¢°2,¢*uv) = R(z,y,¢*z,¢*u).

In (11) we substitute

1) u for gz, y for gz and z for x;

2) z for z, y for ¢>x and u for ¢*x;

3) z for z, y for ¢>x and u for ¢
and obtain respectively
(13) R(z,¢*x, x, ¢°x) = R(x, ¢°x, qx, ¢°x) = R(x, ¢°x, ¢*x, 2) = R(z, ¢*z, ¢>x, x),
(14) R(z,¢*r,z, ¢*x) = R(x,¢*x, qx, x) = R(z, ¢°x, ¢*x, ) = R(x, ¢z, ¢*x, ¢*x).
Using (12), (14) and (8) we get (9) and using (13) and (8) we get (10). O

We see that every 2-plane {z, gz} € T, M has only two g-bases {z, gz} or {—z, —qx}.
So the sectional curvature p of {x, gz} is a function of the (z, qx) = ¢, i.e. p(z,qr) =

()
Proposition 4.2. Let (M,g,q) be a manifold with property (7) and u induce a g-

basis in T,M. If {z,qx, ¢*x,q>r} is an orthonormal q-basis in T,M, then the sectional
curvature satisfies

(15) () =

where ¢ = (u, qu).

Proof. Let v = ax + Bqx + v¢®x + ¢z, where o, 8,7,6 € R. Then qu =
Sx+aqr+ Betr+v¢x, ¢*u = yr+dqr+ag’x+ Beix and ¢Pu = Ba+yqr +0¢%r + ag’e.
We calculate
(16) cosp = af + ad + By + §v; cost = 2ary + 26,
where 0 =¥(u,q?u). Then using the linear properties of the curvature tensor R and
having in mind (12)—(14), we obtain

R(u, qu,u,qu) = (0% + 77 = 286)% + (87 + 6* — 27a)*

—n(3)
17c052<pu 27

(17)
+2(a® + 4% = 2830)(B* + 6% — 2704))R(ac, qx, T, qT).
From (16) we get
(1= cos0)* R(u, qu,u,qu) = (0% +97 = 260)* + (8% + 6 — 27a)*
(18)
+2(a? +~4% = 2B6) (B + 6% — 2’yoz))R(x, gz, T, qT)
We substitute (17) and (18) in (8) and obtain (15). O

5. Parallelity of the circulant structure q.

Theorem 5.1. Let V be the Riemannian connection of g of a manifold (M,g,q).
Then the structure q is parallel with respect to the Riemannian connection V if and only
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if
(19) gradA = (gradC)q¢® , 2gradB = (gradC)(q + ¢*),

where gradA, gradB and gradC' are gradients of the functions A, B and C.

Proof. Let the structure ¢ be parallel with respect to the Riemannian connection V
of a manifold (M, g,q), i.e. Vg =0. Let I'?; be the Christoffel symbols of V. If Vg =0,

then
(20) Vig; = 0iq5 + T5pd; — T = 0.
From (3) and (20) we get
(21) Uiy = iR
We denote

0A oB oC
22 Ai= %5 i = oy i T oy
(22) 0X? 0X? ¢ X

where A, B and C are the functions from (1).

We find the inverse matrix of (g;;) as follows:

@) ()=

&l Ql ol
Ql bl &
@l =l = Q)
=l W Q)

where A = A(A+C) —2B% B=B(C - A),C=2B?-C(A+0O).
Using (1), (3), (21)—(23) and the well known identities
(24) 2T, = 9"*(0igaj + 0i9ai — 0ugij),
after a long computation we get the following system:
Ay —B1+ B3 —Cy =0,
Ay + By — B3 —Cy =0,
242+ Ay —3B1 — B3+ Cy =0,
A3+ By — B4 —C; =0,
A3 — By + By —C1 =0,
Ay — B1+ B3 —Cy =0,
Ay + By — B3 —Cy =0,
Ay — B1 4+ 3B3+ Cy 4 2C4 = 0,
Ay +2A4 —3B1 — B3+ Cy =0,
Ay +2A4 — By —3B3+Cy =0,
A1 +2A5— 3By — By + C3 =0,
A1 —By+ By —C5=0,
Az — By —3Bs + C1 +2C3 =0,
Ay — By —3B4+2C; + C5 =0,
2A1 + A3 — By —3B4+ Cy =0,
Ay — By —3B3+2C+Cy =0.

—~

D= (A-C)((A+C)? —4B?),
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The last system implies
Al = 037 A2 = C47 A3 = Cl; A4 = 02; Bl = B37

(25) By = By, 2B1 =Cy + Cy, 2By = C; + Cs.
Then we obtain that (19) is valid.

Inversely, let (19) be valid. We can verify that (25) is valid, too. The identities (25)
imply (21) and consequently (20) is true. So Vg =0. O

Proposition 5.2. Let (M, g,q) be a manifold with parallel structure g with respect of
g. Then (M, g,q) is a manifold with property (7).

Proof. The condition Vq = 0 implies V;qJ = 0. The integrability condition of this
system is

(26) R?qu(i = RZle?,
where R, are the local coordinates of R. From (26) we find
(27) Rajriq’s = Rsakq; -

We get q% are the local coordinates of ¢°. So (27) implies
R(¢Pu,v,w,t) = R(u, qu,w,t)
from which (7) follows. Then (M, g, q) has the property (7). O
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YETUPUMEPHU PUMAHOBU MHOI'OOBPA3M4 C IBE
INPKYJ/JIAHTHUN CTPYKTYPU

duvutsbp Pymenos Pasmormios

Pasruexkname exaun kaac (M, g,q) Ha dyerupuMepHH pUMaHOBA MHOrooGpasust M,
K'bJIETO OCBEH C METPHKA ¢ MHOTOOOPa3ueTo e CHAGJIEHO ¢ JOITbJIHATEIHA CTPYKTYPa
¢, 9UATO YETBbPTA CTEIEH € HIEHTUTETHT. V310/3BaMe ChIIeCTBYBAHETO Ha JIOKAJIHA
KOOD/IMHATHA CUCTEMA, B KOSATO KOODJUHATHTE HA ¢ U ¢ Ca IMUPKYJAHTHU MATDPHUIH.
B Tasu KoOpJuHATHA CHCTEMa KOODJIUHATUTE HA ¢ CA KOHCTAHTH M ¢ € U30METPUS 110
oTHOIIEHNE HA ¢. Upe3 CHenuasHo ThXKJECTBO 3a TEH30pa HA KPUBMHA R I10pojeH
or cebp3aHocrra V Ha ¢ gedunupame eauH noxkuaac (M, g,q). 3a Besko (M, g,q)
OT TO3M TOJKJIAC HOJIydaBaMe TBbDJEHUS 32 CEKIIMOHHUTE KPUBMHHU Ha J(BYMEDHH
g-ntomaaku. Hamupame HeoOXOMUMO M JOCTATHIHO YCJIOBHE 3a ¢, Taka 4e ¢ Jla e
napaJieiHa 1o OTHOIIeHuEe Ha V.
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