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TWO TYPES OF LIE GROUPS AS 4-DIMENSIONAL
RIEMANNIAN MANIFOLDS WITH CIRCULANT
STRUCTURE"

Iva Dokuzova, Dimitar Razpopov, Mancho Manev

A 4-dimensional Riemannian manifold equipped with an endomorphism of the
tangent bundle, whose fourth power is the identity, is considered. The matrix of
this structure in some basis is a circulant and the structure acts as an isometry with
respect to the metric. Such manifolds are constructed on 4-dimensional real Lie groups
with Lie algebras of two remarkable types. Some of their geometric characteristics are
obtained.

Introduction. The study of Riemannian manifolds with an almost product structure
occupies an important place in differential geometry. The systematic development of the
theory of Riemannian manifold M with a metric ¢ and an almost product structure P is
started by K. Yano in [8]. The classification of almost product manifolds (M, P, g) with
respect to the covariant derivative of P is made by A. M. Naveira in [5]. The manifolds
(M, P, g) with zero trace of P are classified with respect to the covariant derivative of P
by M. Staikova and K. Gribachev in [7].

The Riemannian manifolds equipped with a circulant structure, whose fourth power
is the identity, are considered in [2], [3] and [6]. In particular case, such manifolds could
be Riemannian almost product manifolds with zero trace of the structure.

In the present paper we consider a 4-dimensional Riemannian manifold (M, Q,g),
where @ is an endomorphism of the tangent bundle T'M, whose matrix in some basis
of the tangent space at any point of M is a circulant one. Moreover, the fourth power
of () is the identity and () is an isometry with respect to g. In addition, we consider
the manifold (M, P, g), where P = Q2. Our purpose is to study Lie groups as examples
of the investigated manifolds from the so-called main class W; of Staikova-Gribachev’s
classification. Moreover, we suppose that the corresponding Lie algebras have special
form with respect to G. Mubarakzyanov’s classification [4].

The paper is organized as follows. In Sect. 1, some necessary facts about the considered
manifold are recalled. In Sect. 2, Lie groups with Lie algebras of two special classes are
constructed as manifolds of the type studied. Relations between these classes of Lie
algebras and the class Wy of (M, P, g) are given. Some geometric characteristics of the
constructed manifolds are obtained.
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1. Preliminaries. Let M be a 4-dimensional Riemannian manifold with a metric g.
Let @ be an endomorphism in the tangent space T),M at an arbitrary point p € M with
local coordinates given by the following circulant matrix with respect to some basis

01 00
j 0 010

M @ =004\

10 0 0
Then, @ has the properties
(2) Q* =id, Q? # +id.
We suppose that @) acts as an isometry with respect to the metric g, i.e.
3) 9(Qz,Qy) = g(z,y).

Here and anywhere in this work z,y, z,u will stand for arbitrary elements of the
algebra of the smooth vector fields on M or vectors in the tangent space 1, M. The
Einstein summation convention is used, the range of the summation indices being always
{1,2,3,4}.

We denote the manifold M equipped with the Riemannian metric g and the circulant
structure @ by (M, Q, g).

A basis of T, M, which has the type {z, Qz, Q%z, Q3ac}, is called a )-basis. It is known
from [6] that there exists an orthonormal @Q-basis.

Let V be the Riemannian connection of the metric g. The curvature tensor R of V is
defined by R(z,y)z = V,V,2 — V, V2 — V|, 2. Its associated tensor of type (0,4) is
determined by R(z,y, z,u) = g(R(z,y)z,u). The Ricci tensor p and the scalar curvature
7 are defined as usual by p(y,2) = g R(e;,y, 2, ¢;) and T = g" p(e;, e;) with respect to an
arbitrary basis {e;}. If {z,y} is a non-degenerate 2-plane spanned by z,y € T, M, then its
sectional curvature is determined by k(z,y) = R(z,y, 2, y){g(z,z)g9(y,y) — ¢*(z,y)} '

If we denote P = Q?, then the conditions (2) and (3) imply P? = id, P # =id,
g(Pz, Py) = g(z,y) [3]. Thus, (M, P, g) is a Riemannian manifold with an almost product
structure P. Moreover, (1) implies trP = 0. For such manifolds, Staikova-Gribachev’s
classification is valid. It contains three basic classes W; (i = 1,2, 3) [7]. This classification
was made with respect to the tensor F of type (0,3) and the Lee form 6 defined by

(4) F(z,y,2) = g(VaP)y.2), 0(x) = g7 F (e, ¢5,2),

where ¢g* are the components of the inverse matrix of g with respect to an arbitrary
basis {e;}. The tensor F has the following properties:

(5) F(z,y,z) = F(z,2,y), F(z,y,z) = —F(z, Py, Pz).

The only class of these manifolds, which is closed with respect to the usual conformal

transformations of the metric, is W;. Moreover, only the manifolds of this class have F
expressed explicitly by g and P. Namely, by definition we have

(6) Wi: F(z,y,z) = i{g(fc,y)G(ZHg(fv,Z)@(y)—g(%Py)@(PZ)—g(fv,PZ)G(Py)}-

The class of Riemannian P-manifolds W) is defined by the condition F(z,y,z) = 0 and
W) is included in all classes.

From here on, we consider Riemannian manifolds equipped with structures P and @
satisfying the relation P = Q2.
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According to [2], the condition VQ = 0 for (M, Q, g) implies that (M, P, g) belongs
to Wy. In [6], it is proved that any manifold (M, Q, g) with VQ = 0 has the curvature
property R(z,y,Qz,Qu) = R(x,y,z,u). The converse is not always true. In this work,
we consider a more general condition of the latter equality:

(7) R(Qz,Qy, Qz, Qu) = R(z,y,z,u).
In the next section, we find necessary and sufficient conditions for the manifolds considered
to satisfy the property (7).

2. Lie groups with the structure (Q, g). Let G be a 4-dimensional real connected
Lie group and g be its Lie algebra with a basis {e1, €2, e3, e4} of left invariant vector fields.
We introduce a circulant structure Q and a metric g as follows:

(8) Qer=e4, Qez=e1, Qez=er, Qes=e3;

(9) g(eiaej) = 5ija

where §;; is the Kronecker delta. Then, the basis {e;} used is an orthonormal Q-basis.
Obviously, (1)—(3) are valid and (Q, g) is a structure of the considered type. We denote
the corresponding manifold by (G, Q, g).

We use Mubarakzyanov’s classification [4] of four-dimensional real Lie algebras. This
scheme seems to be the most popular (see [1] and the references therein). We pay attention
to two classes {g4,5} and {g4,¢}, which represent indecomposable Lie algebras, depending
on two real parameters a and b. Actually, they induce two families of manifolds whose
properties are functions of a and b. In this work we focus on the curvature properties of
these manifolds.

2.1. Lie algebra in {g4,5}. Consider the case when g belongs to {g45}. According
to the definition of this class, we have ([1]):

(10) [e1,eq] = €1, [e2,eq] = aeq, [e3,e4] =bes, —1<b<a<1, ab#0.
Proposition 2.1. If g belongs to {gas}, then the curvature tensor R of (G,Q,g)
satisfies the property (7) if and only if the condition a = b =1 holds.

Proof. The well-known Koszul formula implies
29(V€i€ja ek) = g([eia ej]a ek) + g([eka ei]v ej) + g([eka ej]a ei)
and, using (9) and (10), we obtain

Velel = —€4, v6164 = €1, V€262 = —Qeéy4,
Ve, 4 = aeg, Veseq = bes, Veg,e3 = —bey.

Then, we calculate the components R;jxs of R with respect to {e;}. The nonzero of them
are obtained from the symmetries of R and the following equalities:

(11) Ri212 = a, Rigi4 =1, Ra323 = ab,
Raazq = b, Ri313 = b, Rogaq = a®.

According to (8), we obtain that the property (7) is equivalent to the equalities:

Ri212 = R3434 = Ra323 = Ri414, Ri313 = Rago4,
(12) Ri213 = Ra3oa = Ri424 = R334, Ri214 = Ri434 = R123 = R334,
Ri224 = R3123 = R3114 = R34, Ri3z4 = 0.

Due to (11), we get that (12) is satisfied if and only if @ = b = 1. Then, the statement
holds. O



Under the conditions of the proposition above, (11) takes the form
(13) Ri212 = Ria14 = Ro323 = R3a34 = Riz13 = Roaoa = 1.

Proposition 2.2. If g belongs to {ga45}, then (G, P,g) belongs to Wy if and only if
the condition a = b =1 holds.

Proof. Bearing in mind (4), (8) and (9), we get the components Fj;; of F' and 6; of
6 with respect to the basis {e;}. The nonzero of them are determined by the following
equalities:
Fiig = Fio1 = —Fiza = —Fus =1, Fhop = —Foas = 2a,
F3o3 = P30 = —F341 = —I314=b, 02=2a+b+ 1
By equalities (14), we get that the condition (6) holds if and only if a =b=1. O

(14)

Remark 2.3. Obviously, if g is in {g45}, then (G, P, g) does not belong to W, under
any conditions.

By virtue of Proposition 2.1 and Proposition 2.2, we have immediately the following

Proposition 2.4. If g belongs to {gas}, then the curvature tensor R of (G,Q,g)
satisfies (7) if and only if (G, P, g) belongs to W .

Next we get

Proposition 2.5. If g € {ga5} and a = b =1 are valid, then (G,Q,g) is:

(i) an Einstein manifold with a negative scalar curvature T = —8;

(il) of constant sectional curvatures, as the sectional curvatures of the basic 2-planes
are k;; = 1.

Proof. Using (13), we compute the nonzero components of p, the values of 7 and the
sectional curvatures k;; = k(e;, e;) of the basic 2-planes and they are as follows:
P11 =p22=p33=pau=—2, 7=-8, k=1
Then, the statement holds. [
2.2. Lie algebra in {g4,6} Now, consider the case when g belongs to {gse}.
According to the definition of this class, we have ([1]):
(15) [e1,eq] = aeq, [ea,eq] = bea — e3, [e3,e4] = ea+bes, a#0, b>0.

Proposition 2.6. If g belongs to {gsc}, then the curvature tensor R of (G,Q,g)
satisfies (7) if and only if the condition a = b holds.

Proof. It is analogous to the proof of Proposition 2.1. The corresponding equalities
for the components of V and R have the following form

Ve, €1 = —aey, Ve, €4 = aeq, Ve,e2 = —bey, Veg,e4 = bes
v62€4 = b€2, Vea €3 = *b€4, v(:‘462 = €3, V(—:463 = —€2;
2 2
(16) Ri212 = Ri313 = ab, Risia = a®, Roza3 = R334 = Rosos = b".

Using (16), we get that (12), which is the equivalent form of (7), is satisfied if and
only if the condition a = b is valid. [

Under the conditions of the latter proposition, (16) takes the form
(17) Ri212 = Ria1a = Rogo3 = Raasa = Riziz = Roazs = a’.
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Proposition 2.7. If g belongs to {ga}, then (G, P,g) belongs to Wy if and only if
the condition a = b is valid.

Proof. In this case, the nonzero components of F' and 6 are determined by the
following equalities:
Fi12 = Fi91 = —Fuy3 = —Fizga = a, Faoo = —Foyq = 2b,
Fyo3 = F330 = —F314 = —F341 = b, 02 =a+ 3b.
Then, we obtain that (6) is valid if and only if @ = b holds. O

Remark 2.8. Obviously, if g is in {ga6}, then (G, P, g) belongs to W, if and only if
a = b = 0 holds, which contradicts the condition for a in (15).

Due to Proposition 2.6 and Proposition 2.7, we obtain immediately the following

Proposition 2.9. If g belongs to {gae}, then the curvature tensor R of (G,Q,g)
satisfies (7) if and only if the manifold (G, P, g) belongs to W;.

Next, bearing in mind (17), we get

Proposition 2.10. If g € {gs6} and a = b are valid, then (G, Q,g) is:

(i) an Einstein manifold with a negative scalar curvature T = —8a?;
(ii) of constant sectional curvatures, as the sectional curvatures of the basic 2-planes
are k;; = a?.
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JABA TUIIA T'PVYIIN HA JIN KATO 4-MEPHU PUMAHOBU
MHOTOOBPA3U4A C INPKYJIAHTHA CPYKTVYPA

UBa dokyzoBa, JIumurnbp PasnmonoB, Mamnvio Manes

Pazrnenano e 4-mepHo puMaHOBO MHOroobpasme, cHabJIEHO C eHJIOMOP(PU3bM Ha
JIOIUPATEHOTO PA3CJIOEHNE, YUSTO YETBbPTA CTEIleH e uieHTuTerbT. Marpunara Ha
Ta3u CTPYKTypa B HIKaKBa 0a3a € NMUPKY/JAHTHA W CTPYKTypaTa JeicTBa KaTo W30-
MeTpHUsi OTHOCHO MeTpuKaTa. TakuBa MHOroobpasus ca KOHCTPYUPAHU BbPXY 4-MepHU
peasuu rpynu Ha Jlu ¢ anrebpu Ha JIu or aBa 3abenexurennu tuna. llomydenn ca
HSIKOW TEXHW NeOMETPUYHY CBONCTBA.
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