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Four-dimensional almost Einstein manifolds
with skew-circulant stuctures

Iva Dokuzova and Dimitar Razpopov

Abstract. We consider a four-dimensional Riemannian manifold M with
an additional structure S, whose fourth power is minus identity. In a local
coordinate system the components of the metric g and the structure S
form skew-circulant matrices. Both structures S and g are compatible,
such that an isometry is induced in every tangent space of M . By a
special identity for the curvature tensor, generated by the Riemannian
connection of g, we determine classes of Einstein and almost Einstein
manifolds. For such manifolds we obtain propositions for the sectional
curvatures of some characteristic 2-planes in a tangent space of M . We
consider a Hermitian manifold associated with the studied manifold and
find conditions for g, under which it is a Kähler manifold. We construct
some examples of the considered manifolds on Lie groups.
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1. Introduction

The right circulant matrices and the right skew-circulant matrices are Toeplitz
matrices, which are well-studied in [1,3]. The set of invertible circulant (skew-
circulant) matrices form a group with respect to the matrix multiplication.
Such matrices have application to geometry, linear codes, graph theory, vibra-
tion analysis (for example [2,7,9,11,13,14]).

A. Gray, L. Hervella and L. Vanhecke used curvature identities to classify
and to study the almost Hermitian manifolds (for instance in [4–6,15]). The
Hermitian manifolds form a class of manifolds with an integrable almost com-
plex structure J . The class of the Kähler manifolds is their subclass and such
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manifolds have a parallel structure J . According to A. Gray, the Kähler man-
ifolds have an especially rich geometric structure, due to the Kähler curvature
identity R(·, ·, J ·, J ·) = R(·, ·, ·, ·). Some of the recent investigations on the cur-
vature properties of the almost Hermitian manifolds are made in [8,10,12,16].

In the present work we study a four-dimensional differentiable manifold M
with a Riemannian metric g. The manifold M is equipped locally with an
additional structure S, which satisfies S4 = −id. The component matrix of S is
a special skew-circulant matrix, i.e., S is a skew-circulant structure. Moreover,
S is compatible with g, such that an isometry is induced in every tangent
space of M . Such a manifold (M, g, S) is associated with a Hermitian manifold
(M, g, J), where J = S2 is a complex structure.

The paper is organized as follows. In Sect. 2, we introduce a manifold (M, g, S)
and give some necessary facts for our investigations. In Sect. 3, we obtain a
class of almost Einstein manifolds (M, g, S) and a class of Einstein manifolds
(M, g, S). In Sect. 4, we get conditions under which an orthogonal basis of
type {S3x, S2x, Sx, x} exists in every tangent space of (M, g, S). In Sect. 5, we
find some curvature properties of the considered Einstein and almost Einstein
manifolds. In Sect. 6, we obtain a necessary and sufficient condition for S
to be parallel with respect to the Riemannian connection of g. Also, we get
conditions for (M, g, J) to be a Kähler manifold. In Sect. 7, we construct
examples of the considered manifolds on Lie groups and find some of their
geometric characteristics.

2. Preliminaries

Let M be a 4-dimensional Riemannian manifold equipped with an endomor-
phism S in every tangent space TpM at a point p on M . Let the coordinates
of S, with respect to some basis {ei}, form a right skew-circulant matrix as
follows

(Sk
j ) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−1 0 0 0

⎞
⎟⎟⎠ . (2.1)

We use local coordinates to facilitate our calculations.

According to (2.1) S has the property

S4 = −id. (2.2)

We assume that the metric g and the structure S satisfy

g(Sx, Sy) = g(x, y). (2.3)

Here and anywhere in this work, x, y, z, u will stand for arbitrary elements
of the algebra on smooth vector fields on M or vectors in TpM . The Einstein
summation convention is used, the range of the summation indices being always
{1, 2, 3, 4}.
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The conditions (2.1) and (2.3) imply that the matrix of g, with respect to the
local basis {ei}, has the form

(gij) =

⎛
⎜⎜⎝

A B 0 −B
B A B 0
0 B A B

−B 0 B A

⎞
⎟⎟⎠ , (2.4)

i.e., it is right skew-circulant. Here A = A(p) and B = B(p) are smooth
functions of an arbitrary point p(X1,X2,X3,X4) on M . The determinant of
the matrix (2.4) has the value det(gij) = (A2 − 2B2)2. It is supposed that

A(p) >
√

2B(p) > 0 (2.5)

in order g to be positive definite.

A manifold M introduced in this way we denote by (M, g, S).

Now, we consider an associated metric g̃ with g, determined by

g̃(x, y) = g(x, Sy) + g(Sx, y). (2.6)

Using (2.1), (2.4) and (2.6) we get that the matrix of its components is

(g̃ij) =

⎛
⎜⎜⎝

2B A 0 −A
A 2B A 0
0 A 2B A

−A 0 A 2B

⎞
⎟⎟⎠ . (2.7)

Two of the eigenvalues of (2.7) are 2B−√
2A and the other two are 2B+

√
2A.

Since inequalities (2.5) are valid, g̃ has signature (2, 2). So g̃ is an indefinite
metric.

The inverse matrices of (gij) and (g̃ij) are as follows:

(gij) =
1

A2 − 2B2

⎛
⎜⎜⎝

A −B 0 B
−B A −B 0
0 −B A −B
B 0 −B A

⎞
⎟⎟⎠ , (2.8)

(g̃ij) =
1

2(A2 − 2B2)

⎛
⎜⎜⎝

−2B A 0 −A
A −2B A 0
0 A −2B A

−A 0 A −2B

⎞
⎟⎟⎠ . (2.9)

Let ∇ be the Riemannian connection of g. The curvature tensor R of ∇ is
determined by

R(x, y)z = ∇x∇yz − ∇y∇xz − ∇[x,y]z. (2.10)

The tensor of type (0, 4) associated with R is defined by

R(x, y, z, u) = g(R(x, y)z, u). (2.11)

The Ricci tensor ρ with respect to g is given by the well-known formula

ρ(y, z) = gijR(ei, y, z, ej). (2.12)
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The scalar curvature τ with respect to g and its associated quantity τ∗ are
determined by

τ = gijρ(ei, ej), τ∗ = g̃ijρ(ei, ej). (2.13)

Now, we consider a manifold (M, g, S) with the condition

∇S = 0. (2.14)

i.e., S is a parallel structure with respect to ∇.

Proposition 2.1. Every manifold (M, g, S) with a parallel structure S satisfies
the curvature identity

R(x, y, Sz, Su) = R(x, y, z, u). (2.15)

Proof. The well-known formula (∇xS)y = ∇xSy−S∇xy, together with (2.14),
yields

∇xSy = S∇xy. (2.16)

On the other hand, the equality (2.10) implies

R(x, y, Sz, Su) = g
(
R(x, y)Sz, Su

)
.

Because of the latter identity, using (2.3), (2.10), (2.11) and (2.16), we get
(2.15). �

Due to the last proposition, we note that the identity (2.15) defines a more
general class of manifolds (M, g, S) than the class with the condition (2.14).
Farther in this paper, we will investigate the properties of manifolds in these
two classes.

3. Almost Einstein manifolds

In this section we consider manifolds (M, g, S) with the property (2.15).

By Rijkh and ρij we will denote the components of the curvature tensor R
and the components of the Ricci tensor ρ with respect to the local basis {ei},
respectively. Hence, we establish the following propositions.

Proposition 3.1. The property (2.15) of the curvature tensor R of (M, g, S) is
equivalent to the conditions

R1313 =R2424 = R1324 = 2R1212 = 2R1414 = 2R2323 = 2R3434

=2R1223 = 2R1214 = 2R1434 = 2R1234 = 2R2334 = 2R2314,

R1213 =R1224 = R1413 = R2414 = R2423 = R2313 = R1334 = R2434. (3.1)

Proof. The local form of (2.15) is

RijlmSl
kSm

h = Rijkh. (3.2)
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Then, using (2.1), we find the equalities

R1313 =R2424 = R1324,

R1212 =R1414 = R2323 = R3434 = R1223 = R1214 = R1434 = R1234

=R2334 = R2314,

R1213 =R1224 = R1413 = R2414 = R2423 = R2313 = R1334 = R2434.

By applying the Bianchi identity to the above components of R, we obtain
(3.1).

Vice versa, from (2.1) and (3.1) it follows (3.2), so (2.15) holds true. �

Proposition 3.2. If a manifold (M, g, S) has the property (2.15), then the com-
ponents of the Ricci tensor ρ satisfy

ρ11 = ρ22 = ρ33 = ρ44, ρ12 = ρ23 = ρ34 = −ρ14, ρ13 = ρ24 = 0. (3.3)

Proof. Due to Proposition 3.1, the components of the curvature tensor R sat-
isfy (3.1). For brevity, we denote

R1 = R1313, R2 = R1213. (3.4)

Thus, having in mind (2.8), (2.12), (3.1) and (3.4), we get the components of
ρ as follows:

ρ11 = ρ22 = ρ33 = ρ44 =
2

A2 − 2B2

(
2BR2 − AR1

)
,

ρ12 = ρ23 = ρ34 = −ρ14 =
2

A2 − 2B2

(
BR1 − AR2

)
,

ρ13 = ρ24 = 0. (3.5)

So the equalities (3.3) are valid. �

A Riemannian manifold is said to be Einstein if its Ricci tensor ρ is a constant
multiple of the metric tensor g, i.e.

ρ(x, y) = αg(x, y). (3.6)

In [17], for locally decomposable Riemannian manifolds is defined a class of
almost Einstein manifolds. For the considered in our paper manifolds, we give
the following

Definition 3.3. A Riemannian manifold (M, g, S) is called almost Einstein if
the metrics g and g̃ satisfy

ρ(x, y) = αg(x, y) + βg̃(x, y), (3.7)

where α and β are smooth functions on M .

Theorem 3.4. The manifold (M, g, S) with the property (2.15) is almost Ein-
stein.
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Proof. According to Proposition 3.2, for (M, g, S) the equalities (3.3) are valid.
Consequently, using (2.8), (2.9), (2.13) and (3.3), we get the values of the scalar
curvature τ and τ∗ as follows:

τ =
4

A2 − 2B2

(
Aρ11 − 2Bρ12

)
, τ∗ =

4
A2 − 2B2

(
Aρ12 − Bρ11

)
.

Immediately from the latter equalities we have

ρ11 =
τ

4
A +

2τ∗

4
B, ρ12 =

τ

4
B +

τ∗

4
A, (3.8)

and bearing in mind (2.4) and (2.7) we get

ρ11 =
τ

4
g11 +

τ∗

4
g̃11, ρ12 =

τ

4
g12 +

τ∗

4
g̃12.

Then, taking into account (2.4), (2.7), (3.3) and (3.8), we obtain

ρij =
τ

4
gij +

τ∗

4
g̃ij , (3.9)

i.e.

ρ(x, y) =
τ

4
g(x, y) +

τ∗

4
g̃(x, y). (3.10)

Therefore, comparing (3.10) with (3.7), we state that (M, g, S) is an almost
Einstein manifold. �

Let (M, g, S) satisfy the conditions of Theorem 3.4. If we suppose that (M, g, S)
is an Einstein manifold, then its Ricci tensor ρ has the form (3.6). Hence (3.10)
implies the following

Corollary 3.5. If the manifold (M, g, S) with the property (2.15) is Einstein
then

τ∗ = 0. (3.11)

In the next theorem, we express the curvature tensor R of an almost Einstein
manifold (M, g, S) by both structures g and S.

Theorem 3.6. Let (M, g, S) have the property (2.15). Then the curvature ten-
sor R has the form

R =
τ

16
(
2π1 + π3

)
+

τ∗

8
π2, (3.12)

where

π1(x, y, z, u) = g(y, z)g(x, u) − g(x, z)g(y, u),

π2(x, y, z, u) = g(y, z)g̃(x, u) + g(x, u)g̃(y, z)

− g(x, z)g̃(y, u) − g(y, u)g̃(x, z),

π3(x, y, z, u) = g̃(y, z)g̃(x, u) − g̃(x, z)g̃(y, u). (3.13)
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Proof. Due to Proposition 3.2, the components of the Ricci tensor ρ of (M, g, S)
are given by (3.5). Therefore, by straightforward computation, we get

R1 = −1
2
(Aρ11 + 2Bρ12) R2 = −1

2
(Bρ11 + Aρ12).

We substitute (3.8) into the above equalities and obtain

R1 = −1
8
(
(A2 + 2B2)τ + 4ABτ∗),

R2 = −1
8
(
2ABτ + (2B2 + A2)τ∗). (3.14)

From (2.4), (2.7), (3.4) and (3.14) it follows

R1313 =
τ

16

(
2(g13g31 − g11g33) + g̃13g̃31 − g̃11g̃33

)

+
τ∗

8
(
g13g̃31 + g̃13g31 − g̃11g33 − g11g̃33

)
,

R1213 =
τ

16

(
2(g13g21 − g11g23) + g̃13g̃21 − g̃11g̃23

)

+
τ∗

8
(
g13g̃21 + g̃13g21 − g̃11g23 − g11g̃23

)
.

Consequently, using (2.4), (2.7), (3.1), (3.4) and (3.14), we have

Rijkh =
τ

16

(
2(gihgjk − gikgjh) + g̃ihg̃jk − g̃ikg̃jh

)

+
τ∗

8
(
gihg̃jk + g̃ihgjk − g̃ikgjh − gikg̃jh

)
,

which is a local form of (3.12) with (3.13). �

4. Orthogonal S-basis of TpM

If x is a vector in a tangent space TpM of (M, g, S), then applying (2.1) we get
the system of vectors {S3x, S2x, Sx, x}. We will use a basis and an orthogonal
basis of the type {S3x, S2x, Sx, x} in TpM . Therefore, in this section we will
consider the existence of such bases.

If x is a nonzero vector on (M, g, S), then according to (2.1) we have Sx �= ±x.
Thus the angle ϕ between x and Sx belongs to the interval (0, π). Evidently,
the vectors x, Sx, S2x and S3x determine six angles, which belong to (0, π).
For these angles we establish the next statement.

Theorem 4.1. Let x be a nonzero vector on (M, g, S). Then

∠(x, Sx) = ∠(Sx, S2x) = ∠(S2x, S3x) = ϕ, ∠(x, S3x) = π − ϕ,

∠(x, S2x) = ∠(Sx, S3x) =
π

2
, (4.1)

where ϕ ∈ (0, π).
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Proof. Let x = (x1, x2, x3, x4) be a nonzero vector on (M, g, S). By using (2.1),
we get

Sx = (x2, x3, x4,−x1), S2x = (x3, x4,−x1,−x2),
S3x = (x4,−x1,−x2,−x3). (4.2)

Having in mind the components of x, also (2.4) and (4.2), we calculate

g(x, x) =A
(
(x1)2 + (x2)2 + (x3)2 + (x4)2

)

+ 2B(x1x2 + x2x3 + x3x4 − x1x4),

g(x, Sx) =A(x1x2 + x2x3 + x3x4 − x1x4)

+ B
(
(x1)2 + (x2)2 + (x3)2 + (x4)2)

)
. (4.3)

From (2.2) and (2.3) it follows

g(x, Sx) = −g(x, S3x), g(x, S2x) = 0. (4.4)

Now, due to (2.3) and (2.5), we can determine the angle ϕ between x and Sx,
and the angle φ between x and S2x as follows:

cos ϕ =
g(x, Sx)
g(x, x)

, cos φ =
g(x, S2x)
g(x, x)

. (4.5)

We apply (4.3) and (4.4) in (4.5) and find

cos ϕ =
A(x1x2 + x2x3 + x3x4 − x1x4) + B

(
(x1)2 + (x2)2 + (x3)2 + (x4)2

)

A
(
(x1)2 + (x2)2 + (x3)2 + (x4)2

)
+ 2B(x1x2 + x2x3 + x3x4 − x1x4)

cos φ = 0.

Then, bearing in mind (2.3) and (4.4), we get (4.1). �

Definition 4.2. A basis of type {S3x, S2x, Sx, x} of TpM is called an S-basis.
In this case we say that the vector x induces an S-basis of TpM .

The following statements hold.

Theorem 4.3. Every nonzero vector x = (x1, x2, x3, x4), which satisfies

4x2x4
(
(x1)2 − (x3)2

)
+ 4x1x3

(
(x4)2 − (x2)2

)

+
(
(x1)2 + (x3)2

)2 +
(
(x2)2 + (x4)2)

)2 �= 0, (4.6)

induces an S-basis of TpM .

Proof. If a nonzero vector x ∈ TpM has coordinates (x1, x2, x3, x4), then using
(4.2) we get the determinant formed by the coordinates of the vectors x, Sx,
S2x and S3x. It is

� = 4x2x4
(
(x1)2 − (x3)2

)
+ 4x1x3

(
(x4)2 − (x2)2

)

+
(
(x1)2 + (x3)2

)2 +
(
(x2)2 + (x4)2)

)2
.

In case that (4.6) is valid, we have � �= 0, which implies that x, Sx, S2x and
S3x form a basis. �
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Lemma 4.4. Let a vector x induce an S-basis and let ϕ be the angle between x
and Sx. The following inequalities are valid:

π

4
< ϕ <

3π

4
. (4.7)

Proof. We suppose without loss of generality that g(x, x) = 1. Thus, because
of (2.3), (4.4) and (4.5), we find

g(x, Sx) = g(Sx, S2x) = g(S2x, S3x) = −g(x, S3x) = cos ϕ,

g(x, S2x) = g(Sx, S3x) = 0. (4.8)

We consider a nonzero vector y, such that

y = − cos ϕx + Sx − cos ϕS2x. (4.9)

Since g is a Riemannian metric we have g(y, y) > 0. Substituting (4.9) into
the latter inequality, and using (4.8), we get

1 − 2 cos2 ϕ > 0.

Then, taking into account 0 < ϕ < π, we obtain (4.7). �

According to Theorem 4.3, there are many S-bases of TpM . Hence, bearing in
mind Theorem 4.1 and Lemma 4.4, we arrive at the following

Theorem 4.5. For every manifold (M, g, S) there exists an orthogonal S-basis
of TpM .

5. Curvature properties of (M, g, S)

The sectional curvature of a non-degenerate 2-plane {x, y} spanned by the
vectors x, y ∈ TpM is the value

k(x, y) =
R(x, y, x, y)

g(x, x)g(y, y) − g2(x, y)
. (5.1)

Let a vector x induce an S-basis of TpM for (M, g, S). There are determined
six 2-planes {x, Sx}, {x, S2x}, {x, S3x}, {Sx, S2x}, {Sx, S3x} and {S2x, S3x}
in TpM . For the angles between the pairs of vectors equalities (4.1) are valid.
Moreover, the angle ϕ = ∠(x, Sx) satisfies (4.7). In the next theorem we
establish the relations among the sectional curvatures of the 2-planes generated
by an S-basis, the angle ϕ, the scalar curvature τ and τ∗.

Theorem 5.1. Let (M, g, S) have the property (2.15) and let a vector x induce
an S-basis. Then the sectional curvatures of the 2-planes, determined by the
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S-basis, are

k(x, Sx) = k(Sx, S2x) = k(x, S3x) = k(S2x, S3x)

=
1

16(cos2 ϕ − 1)

(
τ(1 + 2 cos2 ϕ) + 4τ∗ cos ϕ

)
,

k(x, S2x) = k(Sx, S3x) = −1
8

(
τ(1 + 2 cos2 ϕ) + 4τ∗ cos ϕ

)
, (5.2)

where ϕ = ∠(x, Sx).

Proof. Let a vector x induce an S-basis. The equalities (2.3), (4.4) and (4.5)
imply

g(x, Sx) = g(Sx, S2x) = g(S2x, S3x) = −g(x, S3x) = g(x, x) cos ϕ,

g(x, S2x) = g(Sx, S3x) = 0. (5.3)

Hence, from (2.2), (2.3), (2.6) and (5.3), we find

g̃(x, x) = 2g(x, x) cos ϕ, g̃(x, S2x) = 0,

g̃(x, Sx) = −g̃(x, S3x) = g(x, x). (5.4)

Applying (3.12), (3.13), (5.3) and (5.4) in (5.1), we obtain (5.2). �

Corollary 5.2. Let a vector x induce an orthonormal S-basis. Then

k(x, Sx) =k(Sx, S2x) = k(x, S3x) = k(S2x, S3x) = − τ

16
,

k(x, S2x) =k(Sx, S3x) = −τ

8
.

Proof. The proof follows directly from (5.2), when ϕ = π
2 . �

Due to Theorem 5.1 and Corollary 3.5 we establish the following

Proposition 5.3. If (M, g, S) with (2.15) is an Einstein manifold, then the sec-
tional curvatures of the 2-planes, determined by an S-basis, are

k(x, Sx) =k(Sx, S2x) = k(x, S3x) = k(S2x, S3x) =
τ(1 + 2 cos2 ϕ)
16(cos2 ϕ − 1)

,

k(x, S2x) =k(Sx, S3x) = −τ

8
(1 + 2 cos2 ϕ).

Now, we recall that the Ricci curvature in the direction of a nonzero vector x
is the value

r(x) =
ρ(x, x)
g(x, x)

. (5.5)

Theorem 5.4. Let (M, g, S) have the property (2.15). If a vector x induces an
S-basis, then the Ricci curvatures in the direction of the basis vectors are

r(x) = r(Sx) = r(S2x) = r(S3x) =
τ

4
+

τ∗

2
cos ϕ, (5.6)

where ϕ = ∠(x, Sx).
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Proof. In the course of the proof of Theorem 3.4, we find that ρ is given by
(3.10). Then, using (2.3), we obtain

ρ(x, x) = ρ(Sx, Sx) = ρ(S2x, S2x) = ρ(S3x, S3x)

=
τ

4
g(x, x) +

τ∗

4
g̃(x, x). (5.7)

Let a vector x induce an S-basis. From (2.3), (5.4), (5.5) and (5.7) it follows
(5.6). �

Proposition 5.5. Let (M, g, S) with (2.15) be an Einstein manifold. If a vector
x induces an S-basis, then the Ricci curvatures in the direction of the basis
vectors are

r(x) = r(Sx) = r(S2x) = r(S3x) =
τ

4
.

Proof. The above equalities follow directly by substituting τ∗ = 0 into
(5.6). �

6. Manifolds with parallel structures

In this section we study a manifold (M, g, S), whose structure S satisfies (2.14).
Also, we consider an associated manifold (M, g, J) with a structure J = S2.
Bearing in mind (2.1) and (2.3), we get that the manifold (M, g, J) is Hermitian
and the structure J is complex. In case that J is parallel (M, g, J) is a Kähler
manifold. The characteristic condition of a Kähler manifold is

∇J = 0. (6.1)

Evidently, for the structure J = S2, the equality (2.14) implies (6.1).

Theorem 6.1. Let (M, g, S) have the property (2.14). Then the scalar curvature
τ and τ∗ satisfy

3τ1 = τ∗
2 − τ∗

4 , 3τ2 = τ∗
1 + τ∗

3 , 3τ3 = τ∗
2 + τ∗

4 , 3τ4 = −τ∗
1 + τ∗

3 , (6.2)

where τi = ∂τ
∂Xi , τ∗

i = ∂τ∗
∂Xi .

Proof. It is known that in a Riemannian manifold for the scalar curvature τ
and the Ricci tensor ρ it is valid

∇iρ
i
k =

1
2
∇kτ, (6.3)

where ρi
k = ρakgai.

On the other hand, if (M, g, S) satisfies (2.14), then it satisfies (2.15). There-
fore, the Ricci tensor has the expression (3.9). Hence, from (2.1), (2.4), (2.7),
(2.8) and (3.9), we get

ρi
k =

τ

4
δ
i

k +
τ∗

4
(
Si

k − (Si
k)3

)
,

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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where δi
k are the Kronecker symbols. Using the above equalities, (2.14) and

(6.3) we obtain

τk =
τi

4
δi
k +

τ∗
i

4
(
Si

k − (Si
k)3

)
,

where because of (2.1) it follows (6.2). �

6.1. Conditions for parallel structures

Theorem 6.2. The manifold (M, g, S) satisfies (2.14) if and only if

A1 = B2 − B4, A2 = B1 + B3, A3 = B2 + B4, A4 = B3 − B1, (6.4)

where Ai =
∂A

∂Xi
, Bi =

∂B

∂Xi
.

Proof. If Γs
ij are the Christoffel symbols of ∇, then

∇iS
t
j = ∂iS

t
j + Γt

ikSk
j − Γk

ijS
t
k. (6.5)

Together with (2.14), (6.5) yields

Γt
ikSk

j = Γk
ijS

t
k. (6.6)

From (2.1) and (6.6) we get

Γ1
11 = Γ2

12 = Γ3
13 = Γ4

14 = Γ3
22 = Γ4

23 = −Γ1
24 = −Γ1

33 = −Γ2
34 = −Γ3

44,

Γ2
11 = Γ3

12 = Γ4
13 = −Γ1

14 = Γ4
22 = −Γ1

23 = −Γ2
24 = −Γ2

33 = −Γ3
34 = −Γ4

44,

Γ3
11 = Γ4

12 = −Γ1
13 = −Γ2

14 = −Γ1
22 = −Γ2

23 = −Γ3
24 = −Γ3

33 = −Γ4
34 = Γ1

44,

Γ4
11 = −Γ1

12 = −Γ2
13 = −Γ3

14 = −Γ2
22 = −Γ3

23 = −Γ4
24 = −Γ4

33 = Γ1
34 = Γ2

44.

Then, applying (2.4) and (2.8) in the well-known identities

2Γs
ij = gas(∂igaj + ∂jgai − ∂agij), (6.7)

we obtain conditions (6.4).

Vice versa. From (2.1), (2.4), (2.8), (6.4) and (6.7) it follows (6.6). Conse-
quently, by (2.1), (6.5) and (6.6) we get (2.14). �

Theorem 6.3. The manifold (M, g, J) is Kähler if and only if the equalities
(6.4) are valid.

Proof. Having in mind (2.1), we get that the components of the structure
J = S2 on (M, g, J) are given by the skew-circulant matrix

(Jk
j ) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ . (6.8)

Let (M, g, J) be a Kähler manifold. Therefore, from (6.1), (6.8) and

∇iJ
t
j = ∂iJ

t
j + Γt

ikJk
j − Γk

ijJ
t
k
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it follows
Γt

ikJk
j = Γk

ijJ
t
k. (6.9)

Together with (6.8), (6.9) yields

Γ1
11 = Γ3

13 = −Γ1
33,Γ

4
14 = Γ4

23 = Γ2
12 = −Γ2

34,Γ
3
22 = −Γ1

24 = −Γ3
44,

Γ2
11 = Γ4

13 = −Γ2
33,Γ

1
14 = Γ1

23 = −Γ3
12 = Γ3

34,Γ
4
22 = −Γ2

24 = −Γ4
44,

Γ3
11 = −Γ1

13 = −Γ3
33,Γ

2
14 = Γ2

23 = −Γ4
12 = Γ4

34,Γ
1
22 = Γ3

24 = −Γ1
44,

Γ4
11 = −Γ2

13 = −Γ4
33,Γ

3
14 = Γ3

23 = Γ1
12 = −Γ1

34,Γ
2
22 = Γ4

24 = −Γ2
44.

From the above equalities, using (2.4), (2.8) and (6.7), we get conditions (6.4).

Vice versa. From (6.4) it follows (2.14) and hence (6.1). So J is a parallel
structure. �

Bearing in mind Theorems 6.2 and 6.3 we state the following

Corollary 6.4. The structure S of (M, g, S) is parallel with respect to ∇ if and
only if the structure J of (M, g, J) is parallel with respect to ∇.

7. Lie groups as 4-dimensional Riemannian manifolds with
skew-circulant structures

Let G be a 4-dimensional real connected Lie group and g be its Lie algebra with
a basis {x1, x2, x3, x4}. We introduce a tensor structure S and a left invariant
metric g as follows:

Sx1 = −x4, Sx2 = x1, Sx3 = x2, Sx4 = x3, (7.1)

g(xi, xj) =
{

0, i �= j;
1, i = j. (7.2)

Obviously (2.2) and (2.3) are valid. Therefore (G, g, S) is a Riemannian man-
ifold of the considered type.

If we suppose that S is an Abelian structure on a Lie group G, then the
commutators [xi, xj ] satisfy

[xi, xj ] = [Sxi, Sxj ]. (7.3)

The conditions (7.1), (7.3) and the Jacobi identity for [xi, xj ] imply

[x1, x2] = [x1, x4] = [x2, x3] = [x3, x4] = λ1x1 + λ2x2 + λ3x3 + λ4x4,

[x1, x3] = [x2, x4] = (λ2 − λ4)x1 + (λ1 + λ3)x2 + (λ2 + λ4)x3

+ (λ3 − λ1)x4, (7.4)

where λi ∈ R.

In this section we investigate a manifold (G, g, S) with a Lie algebra g deter-
mined by (7.4), i.e., a manifold (G, g, S) with an Abelian structure S.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Theorem 7.1. Let (G, g, S) be a manifold with a Lie algebra g determined by
(7.4). Then (G, g, S) has the property (2.14).

Proof. The well-known Koszul formula implies

2g(∇xi
xj , xk) = g([xi, xj ], xk) + g([xk, xi], xj) + g([xk, xj ], xi),

and having in mind (7.2) and (7.4), we find

∇x1x1 = −λ1(x2 + x4) + (λ4 − λ2)x3,

∇x1x2 = λ1(x1 − x3) + (λ4 − λ2)x4,

∇x1x3 = λ1(x2 − x4) + (λ2 − λ4)x1,

∇x1x4 = λ1(x1 + x3) + (λ2 − λ4)x2,

∇x2x1 = −λ2(x2 + x4) − (λ1 + λ3)x3,

∇x2x2 = λ2(x1 − x3) − (λ1 + λ3)x4,

∇x2x3 = λ2(x2 − x4) + (λ1 + λ3)x1,

∇x2x4 = λ2(x1 + x3) + (λ1 + λ3)x2,

∇x3x1 = −λ3(x2 + x4) − (λ2 + λ4)x3,

∇x3x2 = λ3(x1 − x3) − (λ2 + λ4)x4,

∇x3x3 = λ3(x2 − x4) + (λ2 + λ4)x1,

∇x3x4 = λ3(x1 + x3) + (λ2 + λ4)x2,

∇x4x1 = −λ4(x2 + x4) + (λ1 − λ3)x3,

∇x4x2 = λ4(x1 − x3) + (λ1 − λ3)x4,

∇x4x3 = λ4(x2 − x4) + (λ3 − λ1)x1,

∇x4x4 = λ4(x1 + x3) + (λ3 − λ1)x2. (7.5)

From (7.1), (7.5) and the formula (∇xi
S)xj = ∇xi

Sxj − S∇xi
xj we get

(∇xi
S)xj = 0, i.e. (2.14) is valid. �

Further, using (2.10), (2.11), (7.2), (7.4) and (7.5) we calculate the following
components of the curvature tensor R:

R1313 = R2424 = R1324 = 2R1212 = 2R1414 = 2R2323 = 2R3434

= 2R1223 = 2R1214 = 2R1434 = 2R1234 = 2R2334 = 2R2314

= 2(λ2
1 + λ2

2 + λ2
3 + λ2

4),
R1213 = R1224 = R1413 = R2414 = R2423 = R2313 = R1334 = R2434

= 2(λ1λ2 + λ2λ3 + λ3λ4 − λ1λ4). (7.6)

The rest of the nonzero components are obtained from the properties

Rijks = Rksij , Rijks = −Rjiks = −Rijsk.
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From (7.2), (7.6) and the formula (2.12) we get the components of the Ricci
tensor ρ:

ρ11 = ρ22 = ρ33 = ρ44 = −4(λ2
1 + λ2

2 + λ2
3 + λ2

4),

ρ12 = ρ23 = ρ34 = −4(λ1λ2 + λ2λ3 + λ3λ4 − λ1λ4),

ρ13 = ρ24 = 0, ρ14 = −ρ12. (7.7)

Now, using (7.1) and (7.2) we find the components of g̃ determined by (2.6),
and the components of its inverse. They are as follows:

g̃11 = g̃22 = g̃33 = g̃44 = 0, g̃12 = g̃23 = g̃34 = −g̃14 = 1, g̃13 = g̃24 = 0,

g̃11 = g̃22 = g̃33 = g̃44 = 0, g̃12 = g̃23 = g̃34 = −g̃14 =
1
2
, g̃13 = g̃24 = 0.

Then, from (2.13), (7.2) and (7.7), we get the values of the scalar curvature τ
and τ∗ as follows:

τ = −16(λ2
1 + λ2

2 + λ2
3 + λ2

4), τ∗ = −16(λ1λ2 + λ2λ3 + λ3λ4 − λ1λ4). (7.8)

Consequently, the components of g and ρ, the values of τ and τ∗, given by (7.2),
(7.7) and (7.8) respectively, satisfy (3.9), i.e., (G, g, S) is an almost Einstein
manifold.

Further, from (5.1), (7.2) and (7.6), for the sectional curvatures of the basic
2-planes we find

k(x2, x4) = k(x1, x3) = 2(λ2
1 + λ2

2 + λ2
3 + λ2

4),
k(x1, x2) = k(x1, x4) = k(x2, x3) = k(x3, x4) = λ2

1 + λ2
2 + λ2

3 + λ2
4. (7.9)

Therefore, we arrive at the following

Theorem 7.2. Let (G, g, S) be a manifold with a Lie algebra g determined by
(7.4). Then

(i) the nonzero components of the curvature tensor R are (7.6);
(ii) the components of the Ricci tensor ρ are (7.7);
(iii) the scalar curvature τ and τ∗ are (7.8). The manifold is almost Einstein;
(iv) the sectional curvatures of the basic 2-planes are (7.9).

7.1. Einstein manifolds

Let G′ be a subgroup of G, where (G, g, S) is a manifold with a Lie algebra g
determined by (7.4). Let (G′, g, S) be an Einstein manifold. Bearing in mind
Corollary 3.5 and the second equality of (7.8) we construct two examples of
such a manifold.

Case (A) λ3 = λ1, λ2 = 0,

Case (B) λ1 = λ2 + λ4, λ3 = λ4 − λ2.

We note that these cases exhaust the set of Einstein manifolds (G′, g, S) with
an Abelian structure S.
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Let us consider the case (A). With the help of (7.4), (7.7), (7.8) and (7.9), we
prove the following

Proposition 7.3. Let (G′, g, S) be a manifold with a Lie algebra g determined
by

[x1, x2] = [x1, x4] =[x2, x3] = [x3, x4] = λ1x1 + λ1x3 + λ4x4,

[x1, x3] = [x2, x4] = − λ4x1 + 2λ1x2 + λ4x3.

Then

(i) the nonzero components of ρ are ρ11 = ρ22 = ρ33 = ρ44 = −4(2λ2
1 + λ2

4);
(ii) the scalar curvature is τ = −16(2λ2

1 + λ2
4);

(iii) the sectional curvatures of the basic 2-planes are

k(x2, x4) = k(x1, x3) = 2(2λ2
1 + λ2

4),
k(x1, x2) = k(x1, x4) = k(x2, x3) = k(x3, x4) = 2λ2

1 + λ2
4.

For the case (B), with similar calculations, we establish the following

Proposition 7.4. Let (G′, g, S) be a manifold with a Lie algebra g determined
by

[x1, x2] = [x1, x4] = [x2, x3] = [x3, x4] = (λ2 + λ4)x1 + λ2x2

+ (λ4 − λ2)x3 + λ4x4,

[x1, x3] = [x2, x4] = (λ2 − λ4)x1 + 2λ4x2 + (λ2 + λ4)x3 − 2λ2x4.

Then

(i) the nonzero components of ρ are ρ11 = ρ22 = ρ33 = ρ44 = −12(λ2
2 + λ2

4);
(ii) the scalar curvature is τ = −48(λ2

2 + λ2
4);

(iii) the sectional curvatures of the basic 2-planes are

k(x2, x4) = k(x1, x3) = 6(λ2
2 + λ2

4),

k(x1, x2) = k(x1, x4) = k(x2, x3) = k(x3, x4) = 3(λ2
2 + λ2

4).

Conclusion

In fact, we investigate two classes of manifolds (M, g, S). The wider class
consists manifolds with the property (2.15). The manifolds with a parallel
structure S belong to the narrower class. In both classes Einstein and almost
Einstein manifolds are determined. In both classes curvature properties of
(M, g, S) are obtained. Examples of manifolds with a parallel structure S are
constructed on Lie groups. Our future problem is to construct an example of
a manifold (M, g, S) which satisfies (2.15), but does not satisfy (2.14).
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