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Abstract. We consider a 4-dimensional Riemannian manifold M with
a metric g and an endomorphism Q, whose fourth power is the identity
and Q acts as an isometry on g. An associated metric g̃ on (M, g,Q) is
determined by both structures g and Q. The metric g̃ is necessary indefi-
nite and it induces isotropic vectors in the tangent space at an arbitrary
point on M . The physical forces are represented by vector fields. We
study forces whose vectors are in a single tangent space on (M, g,Q). We
calculate the corresponding physical work done by arbitrary forces along
arbitrary curves with respect to g̃. Mainly, we suppose that the vector
force fields are isotropic and they act along isotropic curves. We calculate
the physical work done by such forces.

M.S.C. 2010: 53C15,53B20, 53Z05.
Key words: Riemannian manifold; indefinite metric tensor; isotropic vectors; null
curves.

1 Introduction

The theory of differentiable manifolds with additional structures have many appli-
cations in mathematics and physics. The physical forces on curves of differentiable
manifolds are associated with vector fields on the manifolds and then one could find
the physical work done by such forces. If a vector force field acts along a curve from
one point to another point, the work done by the force is the product of the force
and the displacement. For example, with vector fields are modeled forces such as the
magnetic and gravitational forces. We consider vector force fields along curves of a
Riemannian manifold equipped with an additional indefinite metric. In particular, the
forces and curves are described by isotropic (null, light-like) vectors. The properties of
null curves of semi-Riemannian manifolds and their important applications in general
relativity are studied in detail ([8, 9]). There are some papers concerning physical
results on light-like objects of differentiable manifolds (see [1, 2, 11, 12, 13, 15]).

In the present paper we consider a 4-dimensional Riemannian manifold M with a
metric g and a tensor Q of type (1, 1), whose fourth power is the identity. Moreover,
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Q acts as an isometry on g. Such a manifold (M, g,Q) is defined in [16] and it is
studied also in [3, 4, 5, 7, 10]. We consider an associated metric g̃, introduced in
[4], which is necessary indefinite. Therefore, g̃ determines isotropic (null) vectors in
every tangent space TpM at a point p on (M, g,Q). We investigate the physical work
done by arbitrary vector force fields along arbitrary curves in TpM and in subspaces
of TpM , with respect to g̃. Especially, we obtain the physical work done by isotropic
vector force fields along isotropic curves.

2 Preliminaries

Let M be a 4-dimensional Riemannian manifold with a metric g and a tensor Q of
type (1, 1). Let the local coordinates of Q with respect to some coordinate system
form the following circulant matrix:

(2.1) (Qji ) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Then Q has the property

(2.2) Q4 = id.

We assume that g is a positive definite metric on M , which satisfies the equality

(2.3) g(Ql,Qv) = g(l, v).

Remark 2.1. The notations l, v in (2.3) and furthermore r, e1, e2, e3 will stand for
arbitrary vector fields or arbitrary vectors in TpM .

The manifold (M, g,Q), determined by (2.1) and (2.3), is introduced in [16].
Bearing in mind (2.3), for the angles ϕ = ∠(v,Qv) and φ = ∠(v,Q2v) we have

(2.4) cosϕ =
g(v,Qv)

g(v, v)
cosφ =

g(v,Q2v)

g(v, v)

In [16], for (M, g,Q) and for an arbitrary nonzero vector v in TpM , it is verified that
if v induces a Q-basis of TpM , that is a basis of the type {v,Qv,Q2v,Q3v}, then the
angles φ and ϕ satisfy inequalities

(2.5) 0 < φ < π,
φ

2
< ϕ < π − φ

2
.

The associated metric g̃ on (M, g,Q), determined by

(2.6) g̃(l, v) = g(l, Q2v)

is necessary indefinite [4].
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A nonzero vector v in TpM is isotropic with respect to g̃ if

(2.7) g̃(v, v) = 0.

An isotropic curve c : r = r(t), where t ∈ [α, β] ⊂ R, is this one whose tangent
vector field dr is isotropic, i.e.

(2.8) g̃(dr, dr) = 0.

If F is a vector force field, then the work A done by a force F , with respect to g̃,
moving along a curve c is given by

(2.9) A =

∫
c

g̃(F, dr),

where dr is the elementary displacement on the curve c.

Theorem 2.1. Let F be an isotropic vector force field and let c be an isotropic curve.
If F and the tangent vector field dr of c are linearly dependent, then the work A done
by a force F , with respect to g̃, along the curve c is zero.

Proof. We have that F = kdr, where k is a function. Then, using (2.8) and (2.9), we
get dA = g̃(kdr, dr) = kg̃(dr, dr) = 0, which implies A = 0. �

Due to Theorem 2.1 and having in mind that every vector field and the tangent
vector field to his trajectory are linearly dependent we state

Remark 2.2. If c is a trajectory of isotropic force F , then c is also isotropic and the
corresponding work A is zero.

3 The work in TpM

An orthonormal Q-basis {v,Qv,Q2v,Q3v} exists in every tangent space TpM on
(M, g,Q) ([16]).

We assume that pxyzu is a coordinate system such that the vectors v, Qv, Q2v
and Q3v lie on the axes px, py, pz and pu, respectively. So pxyzu is an orthonormal
coordinate system.

A vector force field F is determined by

F (x, y, z, u) =P (x, y, z, u)v +R(x, y, z, u)Qv

+ S(x, y, z, u)Q2v + L(x, y, z, u)Q3v,
(3.1)

where P = P (x, y, z, u), R = R(x, y, z, u), S = S(x, y, z, u), L = L(x, y, z, u) are
smooth functions.

A smooth curve c is determined by

(3.2) c : r(t) = x(t)v + y(t)Qv + z(t)Q2v + u(t)Q3v,

where t ∈ [α, β] ⊂ R.
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Theorem 3.1. Let F be an arbitrary vector force field and let c be an arbitrary smooth
curve in TpM , determined by (3.1) and (3.2). Then the work A done by a force F ,
with respect to g̃, along c is

(3.3) A =

∫ β

α

(
Pz′(t) +Ru′(t) + Sx′(t) + Ly′(t)

)
dt.

Proof. From (2.6), (2.9), (3.1) and (3.2) it follows (3.3). �

We find conditions for the components of the vectors in TpM , so that they are
isotropic with respect to g̃.

Lemma 3.2. Let {v,Qv,Q2v,Q3v} be an orthonormal Q-basis of TpM . If r = xv +
yQv + zQ2v + uQ3v is an isotropic vector, then its coordinates satisfy

(3.4) xz + yu = 0.

Proof. Taking into account (2.2), (2.6) and (2.7) we get (3.4). �

Furthermore, due to Lemma 3.2, we obtain

Proposition 3.3. If the vector force field (3.1) is isotropic, then its components
satisfy

(3.5) PS +RL = 0.

Proposition 3.4. If the curve (3.2) is isotropic, then the components of its tangent
vector satisfy

(3.6) dxdz + dydu = 0.

Now, we suppose that F and c are both isotropic. Hence, having in mind (3.5)
and (3.6), we consider the following cases.

Case (i) We assume that dy = 0 and dx = 0. Therefore, using (3.3), we obtain

(3.7) A =

∫ β

α

(
P (c1, c2, z, u)z′ +R(c1, c2, z, u)u′

)
dt,

where c1 and c2 are specific constants.
Case (ii) If dy = 0 and dz = 0, then (3.3) implies

(3.8) A =

∫ β

α

(
S(x, c3, c4, u)x′ +R(x, c3, c4, u)u′

)
dt,

where c3 and c4 are specific constants.
Case (iii) We suppose that R = 0 and P = 0. In this case equality (3.3) yields

(3.9) A =

∫ β

α

(
Sx′ + Ly′

)
dt.

Case (iv) If R = 0 and S = 0, then (3.3) implies

(3.10) A =

∫ β

α

(
Ly′ + Pz′

)
dt.
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Case (v) Let R 6= 0, dy 6= 0 be valid. From (3.5) and (3.6) we find respectively

(3.11) L = −PS
R
, du = −dxdz

dy
.

By virtue of (3.3) and (3.11) we have

(3.12) A =

∫ β

α

(
RSx′y′ − PSy′2 + PRy′z′ −R2x′z′

)
Ry′2

dt.

Cases (i) – (v) we summarize in the next statement.

Theorem 3.5. Let F be an isotropic vector force field and let c be an isotropic smooth
curve. Therefore the work A, determined by (3.3), takes one of the following forms:

(i) A is (3.7), if dx = dy = 0;

(ii) A is (3.8), if dy = dz = 0;

(iii) A is (3.9), if P = R = 0;

(iv) A is (3.10), if R = S = 0;

(v) A is (3.12), if dy 6= 0 and R 6= 0.

4 The work in a 3-dimensional subspace of TpM

Let the unit vector v induce a Q-basis of TpM . Then v induces four different Q-
bases of three vectors, which are {v,Qv,Q2v}, {Qv,Q2v,Q3v}, {v,Q2v,Q3v} and
{v,Qv,Q3v}. According to (2.3) and (2.4) all pyramids constructed on these bases
are equal. Thus we will consider only one of them, the 3-dimensional subspace ε of
TpM , spanned by vectors v, Qv and Q2v.

Lemma 4.1. Let ε be a subspace of TpM with a normalized basis {v,Qv,Q2v}. The
system of vectors {e1, e2, e3}, determined by the equalities

e1 =
v +Q2v

2 cos φ2
, e3 =

v −Q2v

2 sin φ
2

,

e2 =
(− cosϕ)v + (1 + cosφ)Qv − (cosϕ)Q2v√

(1 + cosφ)(1 + cosφ− 2 cos2 ϕ)
,

(4.1)

is an orthonormal basis of ε.

Proof. Taking into account (2.1), (2.3), (2.4) and (4.1) we obtain

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e2) = g(e2, e3) = g(e1, e3) = 0.

�
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Lemma 4.2. Let g̃ be the associated metric with g on (M, g,Q). Let ε be a subspace
of TpM with a basis {v,Qv,Q2v}. Then the system of vectors {e1, e2, e3}, determined
by the equalities (4.1), satisfy

g̃(e1, e1) = −g̃(e3, e3) = 1, g̃(e2, e2) = b,

g̃(e1, e2) = g̃(e2, e3) = g̃(e1, e3) = 0,
(4.2)

where

(4.3) b =
cosφ+ cos2 φ− 2 cos2 ϕ

1 + cosφ− 2 cos2 ϕ
.

Proof. Taking into account (2.1), (2.3), (2.4), (2.6) and (4.1) we find (4.2) and (4.3).
�

We consider a coordinate system pxyz such that the vectors e1, e2 and e3 lie on
the axes px, py and pz, respectively. Hereof pxyz is an orthonormal coordinate system
in ε. In the subspace ε of TpM , a vector force field F and a smooth curve c are
determined as follows:

F (x, y, z) = P (x, y, z)e1 +R(x, y, z)e2 + S(x, y, z)e3,(4.4)

(4.5) c : r(t) = x(t)e1 + y(t)e2 + z(t)e3, t ∈ [α, β] ⊂ R.

Theorem 4.3. Let F be an arbitrary vector force field and let c be an arbitrary smooth
curve in ε, determined by (4.4) and (4.5). Then the work A done by a force F , with
respect to g̃, along the curve c is

(4.6) A =

∫ β

α

(
Px′(t) + bRy′(t)− Sz′(t)

)
dt.

Proof. From (2.6) and (4.2) it follows

g̃(F, dr) =g̃(Pe1 +Re2 + Se3, dxe1 + dye2 + dze3)

=P g̃(e1, e1)dx+Rg̃(e2, e2)dy + Sg̃(e3, e3)dz

=Pdx+ bRdy − Sdz

Then, using (2.9), we get (4.6). �

In the following statements we find conditions for the components of the vectors
in ε, such that they are isotropic.

Lemma 4.4. Let {e1, e2, e3} be an orthonormal basis of ε, determined by (4.1). If
r = xe1 + ye2 + ze3 is an isotropic vector, then its coordinates satisfy

(4.7) by2 = z2 − x2.

Proof. From (2.6), (2.7) and (4.2) the proof follows. �
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Remark 4.1. Bearing in mind (4.7) we will consider only the isotropic vectors de-
termined by conditions: b > 0 and |z| > |x|, or b = 0 and |z| = |x|, or b < 0 and
|z| < |x|.

Furthermore, due to Lemma 4.4 and Remark 4.1, we immediately have

Proposition 4.5. Let {e1, e2, e3} be an orthonormal basis of ε, determined by (4.1).
The vector force field (4.4) is isotropic if its components satisfy

(4.8) bR2 = S2 − P 2.

In particular, if b > 0 then |P | < |S|, if b = 0 then |P | = |S|, if b < 0 then |P | > |S|.

Proof. The equalities (4.4) and (4.7) imply (4.8). �

Proposition 4.6. Let {e1, e2, e3} be an orthonormal basis of ε, determined by (4.1).
The curve (4.5) is isotropic if

(4.9) b(dy)2 = (dz)2 − (dx)2.

In particular, if b > 0 then |dz| > |dx|, if b = 0 then |dx| = |dz|, if b < 0 then
|dz| < |dx|.

Evidently, taking into account (4.8) and (4.9) we find

(4.10) b2R2(dy)2 = (S2 − P 2)(dz2 − dx2).

Let us denote

(4.11) δ = arccos

√
1

2
(cosφ+ cos2 φ),

where 0 < φ < π
2 .

Therefore, having in mind (2.5), (4.3) and (4.11), we state the following

Theorem 4.7. Let F be an isotropic vector force field and let c be an isotropic smooth
curve in ε. If ϕ = δ or ϕ = π − δ, then the work A, determined by (4.6), takes one
of the following forms:

(i) A = 2
∫ β
α
Px′(t)dt, if Sdz = −Pdx;

(ii) A = 0, if Sdz = Pdx.

Proof. From (4.3) we get b = 0. Consequently (4.8) and (4.9) imply |P | = |S| and
|dz| = |dx|. Therefore, using (4.6) we find conditions (i) and (ii). �

In a similar way, with the help of (2.5), (4.10) and (4.11), we obtain the next
statements.

Theorem 4.8. Let F be an isotropic vector force field and let c be an isotropic smooth
curve in ε. If ϕ ∈ (φ2 , δ) ∪ (π − δ, π − φ

2 ), |S| < |P |, R > 0 and |dz| < |dx|, then the
work A, determined by (4.6), takes the form

A =

∫ β

α

(
Px′(t)−

√
(S2 − P 2)(z′2 − x′2)− Sz′

)
dt.
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Theorem 4.9. Let F be an isotropic vector force field and let c be an isotropic smooth
curve in ε. If ϕ ∈ (δ, π − δ), |S| > |P |, R > 0 and |dz| > |dx|, then the work A,
determined by (4.6), takes the form

A =

∫ β

α

(
Px′(t) +

√
(S2 − P 2)(z′2 − x′2)− Sz′

)
dt.

5 Work in a 2-plane spanned on {v,Q2v}
Now, we consider an arbitrary 2-plane ε = {v,Q2v} in TpM . Because of (2.1) we have
that the structure Q2 is almost product. Every 2-plane of the type {v,Q2v} in an
arbitrary tangent space of an almost product manifold admits an orthonormal basis
of the type {l, Q2l} (see [14] and [17]).

We suppose that {l, Q2l} is an orthonormal basis of ε. On ε we construct a
coordinate system pxy such that l is on the axis px and Q2l is on the axis py. Hence
pxy is an orthonormal coordinate system. An arbitrary vector force field F and an
arbitrary smooth curve c in ε are given as follows:

F (x, y, z) = P (x, y)l +R(x, y)Q2l,(5.1)

(5.2) c : r(t) = x(t)l + y(t)Q2l, t ∈ [α, β] ⊂ R.

Theorem 5.1. Let F be an arbitrary vector force field and let c be an arbitrary smooth
curve in ε, determined by (5.1) and (5.2). Then the work A done by a force F , with
respect to g̃, along the curve c is

(5.3) A =

∫ β

α

(
P (x, y)y′(t) +R(x, y)x′(t)

)
dt,

Proof. Equalities (2.3), (2.6), (2.9), (5.1) and (5.2) imply (5.3). �

In the following statements we find conditions for the components of the vectors
in ε, such that they are isotropic.

Lemma 5.2. Let {l, Q2l} be an orthonormal basis of the 2-plane ε. If r = xl+ yQ2l
is an isotropic vector, then its coordinates satisfy

xy = 0.

Proof. With the help of (2.3), (2.6) and (2.7) we get the proof. �

Immediately, by virtue of Lemma 5.2, we obtain the following propositions.

Proposition 5.3. The vector force field (5.1) is isotropic if its components satisfy

(5.4) PR = 0.

Proposition 5.4. The curve (5.2) is isotropic if

(5.5) dxdy = 0.
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Due to Theorem 5.1 and the above propositions we obtain the next statement.

Theorem 5.5. Let F be an isotropic vector force field and let c be an isotropic
smooth curve in the 2-plane ε. Hence the work A, determined by (5.3), takes one of
the following forms:

(i) A = 0, if P = 0 and dx = 0,

(ii) A = 0, if R = 0 and dy = 0,

(iii) A =
∫ β
α

(
P (c1, y)y′(t)

)
dt, if R = 0 and dx = 0,

(iv) A =
∫ β
α

(
R(x, c2)x′(t)

)
dt, if P = 0 and dy = 0,

where c1, c2 are specific constants.

Proof. The proof follows by virtue of (5.3), (5.4) and (5.5). �

6 Work in a 2-plane spanned on {v,Qv}
We note that the investigations in this section are based mainly on the results in [6].

We suppose that the unit vector v induces a Q-basis of TpM . We consider the
2-plane η = {v,Qv} in TpM .

Lemma 6.1. Let η be a 2-plane of TpM with a normalized basis {v,Qv}. The system
of vectors {e1, e2}, determined by the equalities

(6.1) e1 =
1

2 cos ϕ2
(v +Qv), e2 = − 1

2 sin ϕ
2

(v −Qv)

is an orthonormal basis of η.

Proof. From (2.3), (2.4) and (6.1) we have immediately g(e1, e1) = g(e2, e2) = 1 and
g(e1, e2) = 0. �

On η we construct a coordinate system pxy with basis vectors e1 on the axis px
and e2 on the axis py, determined by (6.1). Hence pxy is an orthonormal coordinate
system.

With the help of (2.6) and (6.1) we state the following

Lemma 6.2. Let g̃ be the associated metric with g on (M, g,Q). Let η be a 2-plane
of TpM with a basis {e1, e2}, determined by (6.1). Then the vectors e1 and e2 satisfy

g̃(e1, e1) = k1, g̃(e2, e2) = k2, g̃(e1, e2) = 0,(6.2)

where

(6.3) k1 =
cosφ+ cosϕ

1 + cosϕ
, k2 =

cosφ− cosϕ

1− cosϕ
.
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In the 2-plane η, a vector force field F and a smooth curve c are determined as
follows:

F (x, y) = P (x, y)e1 +R(x, y)e2,(6.4)

(6.5) c : r(t) = x(t)e1 + y(t)e2, t ∈ [α, β] ⊂ R.

Theorem 6.3. Let F be an arbitrary vector force field and let c be an arbitrary smooth
curve in η, determined by (6.4) and (6.5). Then the work A done by a force F , with
respect to g̃, along the curve c is

(6.6) A =

∫ β

α

(
k1P (x, y)x′(t) + k2R(x, y)y′(t)

)
dt.

Proof. From (2.6) and (6.2) it successively follows

g̃(F, dr) =g̃(Pe1 +Re2, dxe1 + dye2)

=k1P g̃(e1, e1)dx+ k2Rg̃(e2, e2)dy + (Pdy +Rdx)g̃(e1, e2)

=k1Pdx+ k2Rdy,

and using (2.9) we obtain (6.6). �

Farther, we find conditions for the components of the vectors in η, so that they
are isotropic with respect to g̃.

Lemma 6.4. Let {e1, e2} be an orthonormal basis of the 2-plane η, determined by
(6.1). If r = xe1 + ye2 is an isotropic vector, then its coordinates satisfy

k1x
2 + k2y

2 = 0, k1k2 ≤ 0.

Proof. By equalities (2.5), (2.6), (2.7), (6.2) and (6.3) we get the proof. �

Immediately, by virtue of Lemma 6.4, we obtain the following propositions.

Proposition 6.5. The vector force field (6.4) is isotropic if its components satisfy

(6.7) k1P
2 + k2R

2 = 0, k1k2 ≤ 0.

Proposition 6.6. The curve (6.5) is isotropic if

(6.8) k1(dx)2 + k2(dy)2 = 0, k1k2 ≤ 0.

Let F be an isotropic vector force field and let c be an isotropic smooth curve in
η. According to the values of the coefficients k1 and k2 we have two cases.

First we consider the case when k1k2 = 0. If ϕ = φ 6= π
2 , then (6.3) implies k1 6= 0,

k2 = 0. Consequently, from (6.7) and (6.8) we have P = 0, dx = 0, which implies
A = 0. Similarly, if we suppose that ϕ = π − φ, then A = 0.

Therefore we obtain the next statement.

Theorem 6.7. Let F be an isotropic vector force field and let c be an isotropic smooth
curve in the 2-plane ε. If ϕ = φ or ϕ = π − φ, then the work determined by (6.6) is
A = 0.
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Now, we consider the case when k1k2 < 0. Bearing in mind inequalities (2.5), we
have that both angles φ and ϕ satisfy one of the following conditions:

φ ∈ (0,
π

2
), ϕ ∈ (

φ

2
, φ) ∪ (π − φ, π − φ

2
);(6.9)

φ ∈ (
π

2
,

2π

3
), ϕ ∈ (

φ

2
, π − φ) ∪ (φ, π − φ

2
);(6.10)

φ =
π

2
, ϕ 6= φ

2
.(6.11)

In this case, the curve c : k1x
2 + k2y

2 = 0 degenerates into two lines with equations:

(6.12) y = ±
√
−k1
k2

x, k1k2 < 0.

The above considerations imply the next statement.

Theorem 6.8. Let F be an isotropic vector force field and let c be an isotropic smooth
curve in the 2-plane ε. If one of the conditions (6.9) – (6.11) is valid, then the work
determined by (6.6) takes one of the following forms:

(i) A = 0, if R = ±
√
−k1
k2
P , dy = ∓

√
−k1
k2
dx;

(ii) A = 2
∫ β
α
P
(
t,±
√
−k1
k2
t
)
dt, if R = ±

√
−k1
k2
P and dy = ±

√
−k1
k2
dx.

Proof. Substituting (6.12) into (6.6) we get conditions (i) and (ii). �
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nian P -manifolds, Plovdiv. Univ. Paisǐı Khilendarski Nauchn. Trud. Mat. 25, 3
(1987), 253–266 (in Bulgarian)

Authors’ address:

Dimitar Razpopov, Georgi Dzhelepov
Department of Mathematics and Informatics,
Agricultural University of Plovdiv,
12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria.
E-mail addresses: razpopov@au-plovdiv.bg , dzhelepov@abv.bg


