PAPER•OPEN ACCESS

The value of the work done by an isotropic vector force field along an isotropic curve

To cite this article: Dimitar Razpopov and Georgi Dzhelepov 2020 IOP Conf. Ser.: Mater. Sci. Eng. 878012021

View the article online for updates and enhancements.

You may also like
Comparative analysis of sorption characteristics of Bulgarian grape seeds and flours and flakes produced by them A G Durakova, A L Bogoeva, A P Krasteva et al.

Model of process and model of natural language processing system M Zhekova and G Totkov

Conceptual Frame Model For The Presentation Of The Concepts And Rules In Natural Language Interface For Database
M Zhekova and G Totkov

The value of the work done by an isotropic vector force field along an isotropic curve

Dimitar Razpopov ${ }^{1}$ and Georgi Dzhelepov ${ }^{2}$
${ }^{1}$ Department of Mathematics and Informatics, Agricultural University of Plovdiv, 12 Mendeleev Blvd., Bulgaria 4000
E-mail: razpopov@au-plovdiv.bg
${ }^{2}$ Department of Mathematics and Informatics, Agricultural University of Plovdiv, 12 Mendeleev Blvd., Bulgaria 4000
E-mail: dzhelepov@au-plovdiv.bg

Abstract

In the present paper we consider a 3-dimensional differentiable manifold M equipped with a Riemannian metric g and an endomorphism Q, whose third power is the identity and Q acts as an isometry on g. Both structures g and Q determine an associated metric f on (M, g, Q). The metric f is necessary indefinite and it defines isotropic vectors in the tangent space $T_{p} M$ at an arbitrary point p on M.

The physical forces are represented by vector fields. We investigate physical forces whose vectors are in $T_{p} M$ on (M, g, Q). Moreover, these vectors are isotropic and they act along isotropic curves. We study the physical work done by such forces.

1. Introduction

The physical work and the physical force on differentiable manifolds have a great application in physics. Vector fields are often used to model a force, such as the magnetic or gravitational force, as it changes from one point to another point. As a particle moves through a force field along a curve c, the work done by the force is the product of force and displacement. There are some papers concerning physical results on light-like (degenerate) objects of differentiable manifolds ([4], [8] and [9]).

The object of the present paper is a 3 -dimensional differentiable manifold M equipped with a Riemannian metric g and a tensor Q of type $(1,1)$, whose third power is the identity and Q acts as an isometry on g. Such a manifold (M, g, Q) is defined in [6] and studied in [1], [2], [3] and [7]. Also, we consider an associated metric f, which is introduced in [7]. The metric f is necessary indefinite and it determines space-like vectors, isotropic vectors and time-like vectors in the tangent space $T_{p} M$ at an arbitrary point p on M.

We investigate physical forces whose vectors are in $T_{p} M$ on (M, g, Q). Moreover, these vectors are isotropic with respect to f and they act along isotropic curves. We study the physical work done by such forces.

2. Preliminaries

Let M be a 3 -dimensional Riemannian manifold equipped with an endomorphism Q in the tangent space $T_{p} M, p \in M$. Let the local coordinates of Q with respect to some coordinate
system form the circulant matrix:

$$
\left(Q_{i}^{j}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

Then Q has the property

$$
\begin{equation*}
Q^{3}=\mathrm{id} \tag{1}
\end{equation*}
$$

Let g be a positive definite metric on M, which satisfies the equality

$$
\begin{equation*}
g(Q r, Q i)=g(r, i) . \tag{2}
\end{equation*}
$$

In (2) and further r, i, w will stand for arbitrary vectors in $T_{p} M$.
Such a manifold (M, g, Q) is introduced in [6].
It is well-known that the norm of every vector i is given by $\|i\|=\sqrt{g(i, i)}$. Then, having in mind (2), for the angle $\varphi=\angle(i, Q i)$ we have

$$
\cos \varphi=\frac{g(i, Q i)}{g(i, i)} .
$$

In [6], for (M, g, Q), it is verified that the angle φ is in $\left[0, \frac{2 \pi}{3}\right]$. If $\varphi \in\left(0, \frac{2 \pi}{3}\right)$, then the vector i form a basis $\left\{i, Q i, Q^{2} i\right\}$, which is called a Q-basis of $T_{p} M$.

The associated metric f on (M, g, Q), determined by

$$
\begin{equation*}
f(r, i)=g(r, Q i)+g(Q r, i) . \tag{3}
\end{equation*}
$$

is necessary indefinite [7].
A vector r in $T_{p} M$ is isotropic with respect to f if

$$
\begin{equation*}
f(r, r)=0 . \tag{4}
\end{equation*}
$$

In every $T_{p} M$, for (M, g, Q), there exists an orthonormal Q-basis $\left\{i, Q i, Q^{2} i\right\}$ ([6]). From (1), (3) and (4) we state the following

Lemma 2.1. Let $\left\{i, Q i, Q^{2} i\right\}$ be an orthonormal Q-basis of $T_{p} M$. If $r=u i+v Q i+q Q^{2}{ }_{i}$ is an isotropic vector, then its coordinates satisfy

$$
\begin{equation*}
u v+v q+q u=0 . \tag{5}
\end{equation*}
$$

An isotropic (null) curves $c: r=r(t)$ are those whose tangent vectors are everywhere isotropic, i.e.,

$$
\begin{equation*}
f(d r, d r)=0 . \tag{6}
\end{equation*}
$$

The physical forces are represented by vector fields. We investigate physical forces whose vectors are in $T_{p} M$ on (M, g, Q). Moreover, these vectors are isotropic and they act along isotropic curves. We study the physical work done by such forces.

IOP Conf. Series: Materials Science and Engineering 878 (2020) 012021 doi:10.1088/1757-899X/878/1/012021

3. The work in $T_{p} M$

We consider an orthonormal Q-basis $\left\{i, Q i, Q^{2} i\right\}$ in $T_{p} M$ on (M, g, Q).
Let $p_{x y z}$ be a coordinate system such that the vectors $i, Q i$ and $Q^{2} i$ are on the axes p_{x}, p_{y} and p_{z}, respectively. So $p_{x y z}$ is an orthonormal coordinate system.

The curve c is determined by

$$
\begin{equation*}
c: r(t)=x(t) i+y(t) Q i+z(t) Q^{2} i, \tag{7}
\end{equation*}
$$

where $t \in[\alpha, \beta] \subset \mathbb{R}$.
Let c be an isotropic smooth curve. Thus equalities (1), (3), (6) and (7) imply

$$
\begin{equation*}
d x d y+d y d z+d x d z=0 \tag{8}
\end{equation*}
$$

We determine a vector force field

$$
\begin{equation*}
F(x, y, z)=P(x, y, z) i+R(x, y, z) Q i+S(x, y, z) Q^{2} i \tag{9}
\end{equation*}
$$

where $P=P(x, y, z), R=R(x, y, z), S=S(x, y, z)$ are smooth functions.
Let the vector field F be isotropic. Hence following (5) we get

$$
\begin{equation*}
P R+R S+S P=0 \tag{10}
\end{equation*}
$$

Work A done by a force F, with respect to f, moving along a curve c is given by

$$
\begin{equation*}
A=\int_{c} f(F, d r) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
d r=d x i+d y Q i+d z Q^{2} i . \tag{12}
\end{equation*}
$$

Case (A) Let F and c are both isotropic and they are on the same direction. Since c is a trajectory of F we have that the vectors F and $d r$ are collinear. Therefore their coordinates satisfy

$$
\begin{equation*}
\frac{d x}{P}=\frac{d y}{R}=\frac{d z}{S}=\frac{1}{k} \tag{13}
\end{equation*}
$$

where $k \neq 0$ is a function. From (9) and (13) it follows $F=k d r$. Then, having in mind (6) and (11), we get $d A=f(k d r, d r)=k f(d r, d r)=0$, i.e., $A=0$.

Case (B) Now, we consider the case when F and c are both isotropic but they are on different directions.

From (3), (11) and (12) it follows

$$
\begin{equation*}
A=\int_{c}[P(d y+d z)+R(d x+d z)+S(d x+d y)] \tag{14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
A=\int_{\alpha}^{\beta}\left[P\left(y^{\prime}+z^{\prime}\right)+R\left(x^{\prime}+z^{\prime}\right)+S\left(x^{\prime}+y^{\prime}\right)\right] d t . \tag{15}
\end{equation*}
$$

- Let $d x+d y=0$. From (8) we have $d x=d y=0$ and $d z \neq 0$. Then $d r=d z Q^{2} i$. Therefore, using (15), we get

$$
\begin{equation*}
A=\int_{\alpha}^{\beta}\left(P\left(k_{1}, k_{2}, t\right)+R\left(k_{1}, k_{2}, t\right)\right) d t \tag{16}
\end{equation*}
$$

where k_{1} and k_{2} are specific constants.

- Let $P+R=0$. From (10) we have $P=R=0$ and hence $S \neq 0$. In this case equalities (11) and (15) imply

$$
\begin{equation*}
A=\int_{\alpha}^{\beta} S(x(t), y(t), z(t))\left[x^{\prime}(t)+y^{\prime}(t)\right] d t . \tag{17}
\end{equation*}
$$

- Let $d x+d y \neq 0$ and $P+R \neq 0$. With the help of (8) and (10) we get

$$
\begin{equation*}
d z=-\frac{d x d y}{d x+d y}, \quad S=-\frac{P R}{P+R} . \tag{18}
\end{equation*}
$$

We use (14), (15) and (18) and obtain that the work A is determined by

$$
\begin{equation*}
A=\int_{\alpha}^{\beta} \frac{\left(P y^{\prime}-R x^{\prime}\right)^{2}}{(P+R)\left(x^{\prime}+y^{\prime}\right)} d t \tag{19}
\end{equation*}
$$

From Case (A) and Case (B) we state the following
Theorem 3.1. Let f be the associated metric on (M, g, Q). Let $p_{x y z}$ be a coordinate system such that the vectors $i, Q i$ and $Q^{2} i$ of the orthonormal Q-basis in $T_{p} M$ are on the axes p_{x}, p_{y} and p_{z}, respectively. Let F be an isotropic vector force field moving along an isotropic curve c. Let A be the work done by F. Then
(i) A is zero if F and c are on the same direction;
(ii) A is (16) if F and c are on different directions and $d x+d y=0$;
(iii) A is (17) if F and c are on different directions and $P+Q=0$;
(iv) A is (19) if F and c are on different directions and $d x+d y \neq 0$ and $P+R \neq 0$.

4. Work in a 2-plane

Now we consider an arbitrary 2-plane $\alpha=\{i, Q i\}$ in $T_{p} M$. We suppose that the angle $\varphi=\angle(i, Q i)$ belongs to the interval $\left(0, \frac{2 \pi}{3}\right]$. On α we construct a coordinate system $p_{x y}$ such that i is on the axis p_{x} and j is on the axis p_{y}, where

$$
\begin{equation*}
j=\frac{1}{\sin \varphi}(-\cos \varphi i+Q i) \tag{20}
\end{equation*}
$$

We assume that $\|i\|=1$ and then $p_{x y}$ is an orthonormal coordinate system.
In [5] it is proved the following
Theorem 4.1. Let f be the associated metric on (M, g, Q) and let $\alpha=\{i, Q i\}$ be an arbitrary 2 -plane in $T_{p} M$. Let the vector j be defined by (20) and $p_{x y}$ be a coordinate system such that $i \in p_{x}, j \in p_{y}$. Then the equation of the circle $c: f(w, w)=a^{2}$ in α is given by

$$
\begin{equation*}
(\cos \varphi) x^{2}+\frac{(1-\cos \varphi)(1+2 \cos \varphi)}{\sin \varphi} x y-\frac{\cos ^{2} \varphi}{1+\cos \varphi} y^{2}=\frac{a^{2}}{2} \tag{21}
\end{equation*}
$$

where $\varphi \in\left(0, \frac{2 \pi}{3}\right]$.
Let $w=u i+v j$ be an isotropic vector, i.e., $f(w, w)=0$. Therefore, with the help of (21), we obtain

$$
\begin{equation*}
\cos ^{2} \varphi\left(\frac{y}{x}\right)^{2}-\sin \varphi(1+2 \cos \varphi) \frac{y}{x}-(1+\cos \varphi) \cos \varphi=0 . \tag{22}
\end{equation*}
$$

The discriminant of (22) is

$$
D=(1+\cos \varphi)(1+3 \cos \varphi) .
$$

Then we get the following cases:
Case (A) If $\varphi \in\left(\arccos \left(-\frac{1}{3}\right), \frac{2 \pi}{3}\right)$, then $D<0$. There is no isotropic directions in $T_{p} M$.
Case (B) If $\varphi=\arccos \left(-\frac{1}{3}\right)$, then $D=0$. We have one isotropic straight line $c: y=\sqrt{2} x$. Then the force F and the curve c both are on one isotropic direction and the work A of the force F along c is zero.

Case (C) If $\varphi \in\left(0, \frac{\pi}{2}\right) \bigcup\left(\frac{\pi}{2}, \arccos \left(-\frac{1}{3}\right)\right)$, then $D>0$. We have two isotropic directions which generate two straight lines:

$$
c_{1}: y=k_{1} x, \quad c_{2}: y=k_{2} x, \quad x \in[\alpha, \beta]
$$

where k_{1} and k_{2} are solutions of the equation (22) for $\frac{y}{x}$.

- If F is on c_{1}, then the work of F along c_{1} is zero. Similarly, if F is on c_{2}, then the work of F along c_{2} is zero.
- We suppose that F is on c_{2} but F acts on c_{1}. Then

$$
\begin{equation*}
F(x, y)=P(x, y)\left(i+k_{2} j\right), \quad d r=d t\left(i+k_{1} j\right) \tag{23}
\end{equation*}
$$

Bearing in mind (2) and (20) we calculate

$$
\begin{array}{ll}
g(i, Q i)=g(Q i, i)=\cos \varphi, & g(i, Q j)=g(Q j, i)=\frac{\cos \varphi-\cos ^{2} \varphi}{\sin \varphi} \tag{24}\\
g(j, Q i)=g(Q i, j)=\sin \varphi, & g(j, Q j)=g(Q j, j)=-\frac{\cos ^{2} \varphi}{1+\cos \varphi}
\end{array}
$$

On the other hand the solutions k_{1} and k_{2} of (22) satisfy equalities

$$
\begin{equation*}
k_{1}+k_{2}=\frac{\sin \varphi(1+2 \cos \varphi)}{\cos ^{2} \varphi}, \quad k_{1} k_{2}=-\frac{1+\cos \varphi}{\cos \varphi} \tag{25}
\end{equation*}
$$

Using (3), (11), (23), (24) and (25) we find

$$
\begin{equation*}
A=\frac{1+3 \cos \varphi}{\cos ^{2} \varphi} \int_{\alpha}^{\beta} P\left(t, k_{1} t\right) d t \tag{26}
\end{equation*}
$$

- Similarly, if F is on c_{1} and F acts on c_{2} we get

$$
A=\frac{1+3 \cos \varphi}{\cos ^{2} \varphi} \int_{\alpha}^{\beta} P\left(t, k_{2} t\right) d t
$$

Case (D) Finally, the condition $\varphi=\frac{\pi}{2}$ applied to (20) yields $j=Q i$. Then i and j are isotropic vectors. Therefore, from (3) and (11) it follows:

- $F=P(t, 0) Q i, d r=(d t) i$. The work is $A=\int_{\alpha}^{\beta} P(t, 0) d t$.
- $F=P(0, t) i, d r=(d t) Q i$. The work is $A=\int_{\alpha}^{\beta} P(0, t) d t$.

The results in Case (A) - Case (D) are summarized in Table 1.

Acknowledgments

This work is supported by project " $17-12$ Supporting Intellectual Property" of the Center for Research, Technology Transfer and Intellectual Property Protection, Agricultural University of Plovdiv, Bulgaria.

IOP Conf. Series: Materials Science and Engineering 878 (2020) 012021 doi:10.1088/1757-899X/878/1/012021

Table 1. Work \boldsymbol{A} done by an isotropic vector force field F along an isotropic curve

φ	F acts on	trajectory of F	A
$\left(\arccos \left(-\frac{1}{3}\right), \frac{2 \pi}{3}\right)$	-	no is. curves	-
$\arccos \left(-\frac{1}{3}\right)$	$c: y=\sqrt{2} x$	$c: y=\sqrt{2} x$	0
$\left(0, \frac{\pi}{2}\right) \bigcup\left(\frac{\pi}{2}, \arccos \left(-\frac{1}{3}\right)\right)$	$c_{1}: y=k_{1} x$	$c_{1}: y=k_{1} x$	0
$\left(0, \frac{\pi}{2}\right) \bigcup\left(\frac{\pi}{2}, \arccos \left(-\frac{1}{3}\right)\right)$	$c_{2}: y=k_{2} x$	$c_{2}: y=k_{2} x$	0
$\left(0, \frac{\pi}{2}\right) \bigcup\left(\frac{\pi}{2}, \arccos \left(-\frac{1}{3}\right)\right)$	$c_{1}: y=k_{1} x$	$c_{2}: y=k_{2} x$	$A=\frac{1+3 \cos \varphi}{\cos ^{2} \varphi} \int_{\alpha}^{\beta} P\left(t, k_{1} t\right) d t$
$\left(0, \frac{\pi}{2}\right) \bigcup\left(\frac{\pi}{2}, \arccos \left(-\frac{1}{3}\right)\right)$	$c_{2}: y=k_{2} x$	$c_{1}: y=k_{1} x$	$A=\frac{1+3 \cos \varphi}{\cos ^{2} \varphi} \int_{\alpha}^{\beta} P\left(t, k_{2} t\right) d t$
$\frac{\pi}{2}$	$c_{1}: x=0$	$c_{2}: y=0$	$A=\int_{\alpha}^{\beta} P(t, 0) d t$
$\frac{\pi}{2}$	$c_{1}: y=0$	$c_{2}: x=0$	$A=\int_{\alpha}^{\beta} P(0, t) d t$.

References

[1] I. Dokuzova 2017 Almost Einstein manifolds with circulant structures, J. Korean Math. Soc. 54 (5), 1441-1456.
[2] I. Dokuzova 2018 On a Riemannian manifolds with a circulant structure whose third power is the identity, Filomat 32 (10), 3529-3539.
[3] I. Dokuzova, D. Razpopov and G. Dzhelepov 2018 Three-dimensional Riemannian manifolds with circulant structures, Adv. Math., Sci. J. 7 (1), 9-16.
[4] K. L. Duggal and B. Sahin 2010 Differential Geometry of Lightlike Submanifolds, Frontiers in Mathematics, (Basel: Birkhäuser), p. 488.
[5] G. Dzhelepov 2018 Spheres and circles in the tangent space at a point on a Riemannian manifold with respect to an indefinite metric, Novi Sad J. Math. 48 (1), 143-150.
[6] G. Dzhelepov, I. Dokuzova and D. Razpopov 2011 On a three-dimensional Riemannian manifold with an additional structure, Plovdiv. Univ. Paisii Khilendarski Nauchn. Trud. Mat. 38 (3), 17-27.
[7] G. Dzhelepov, D. Razpopov and I. Dokuzova 2010 Almost conformal transformation in a class of Riemannian manifolds, In: Research and Education in Mathematics, Informatics and their Applications - REMIA 2010, Proc. Anniv. Intern. Conf. Plovdiv, Bulgaria, 125-128.
[8] T. Korpınar and R. C. Demirkol 2017 Energy on a timelike particle in dynamical and electrodynamical force fields in De-Sitter space, Revista Mexicana de Fısica 63, 560-568.
[9] Robert H. Wasserman 2004 Tensors and Manifolds: With Applications to Physics, (New York: Oxford University Press), p. 447.

