CURVATURE PROPERTIES OF RIEMANNIAN MANIFOLDS WITH CIRCULANT STRUCTURES

DIMITAR RAZPOPOV¹ AND GEORGI DZHELEPOV

Abstract

We study a Riemannian manifold M equipped with a circulant structure Q, which is an isometry with respect to the metric. We consider two types of such manifolds: a 3-dimensional manifold M where the third power of Q is the identity, and a 4-dimensional manifold M where the fourth power of Q is the identity. In a single tangent space of M we have a special tetrahedron constructed by vectors of a Q-basis. The aim of the present paper is to find relations among the sectional curvatures of the 2-planes associated with the four faces of this tetrahedron and its cross sections passing through the medians and the edges of these faces.

1. Introduction

The study of pseudo-Riemannian manifolds with additional structures in differential geometry is of great interest to many mathematicians. Substantial results are associated with the sectional curvatures of some characteristic 2-planes, determined in every tangent space of the manifold (for instance [1], [5], [7], [8], [9], [11]).
In the present paper, we continue our research on the manifolds with additional structures, introduced in [6] and [10]. We consider a Riemannian manifold M equipped with a circulant structure Q, which is an isometry

[^0]2010 Mathematics Subject Classification. 53C15, 53B20, 15B05.
Key words and phrases. Riemannian manifold, sectional curvature, circulant matrix.
with respect to the metric g. We study two classes of such manifolds determined by special properties of the curvature tensor. We find expressions of the curvatures of special 2-planes formed by vectors in a tangent space $T_{p} M, p \in M$.

First, we consider a 3-dimensional manifold (M, g, Q) where the third power of Q is the identity. In a single tangent space of (M, g, Q) we have a special tetrahedron constructed by vectors of a Q-basis of $T_{p} M$. We find a relation among the sectional curvatures generated by the four faces of the tetrahedron and its cross sections passing through the medians and the edges of these faces. Farther, we consider a 4-dimensional manifold (M, g, Q) where the fourth power of Q is the identity. We find a relation among the sectional curvatures of the faces and some cross sections of a tetrahedron constructed by vectors of a Q-basis of $T_{p} M$. Let us note that the obtained results for (M, g, Q) in the case when $n=4$ are not similar to the results at $n=3$.

2. Preliminaries

We consider a n-dimensional Riemannian manifold M with a metric g, equipped with an endomorphism Q in $T_{p} M$, such that $Q^{n}=\mathrm{id}, Q \neq \pm \mathrm{id}$. Moreover, we suppose that Q is a circulant structure, i.e. the matrix of the components of Q in some basis is circulant. We assume that g is positive definite metric and Q is compatible with g such that

$$
\begin{equation*}
g(Q x, Q y)=g(x, y) \tag{2.1}
\end{equation*}
$$

Here and anywhere in this work x, y, z, u will stand for arbitrary elements of the algebra of the smooth vector fields on M or vectors in $T_{p} M$.

We denote by (M, g, Q) the manifold M equipped with the metric g and the structure Q.

Let ∇ be the Riemannian connection of the metric g on (M, g, Q). The curvature tensor R of ∇ is determined by

$$
R(x, y) z=\nabla_{x} \nabla_{y} z-\nabla_{y} \nabla_{x} z-\nabla_{[x, y]} z .
$$

The tensor of type $(0,4)$ associated with R is defined by the identity

$$
R(x, y, z, u)=g(R(x, y) z, u)
$$

We say that a manifold (M, g, Q) is in class \mathcal{L}_{0} if the structure Q is parallel with respect to g, i.e., $\nabla Q=0$.

We say that a manifold (M, g, Q) is in class \mathcal{L}_{1} if

$$
\begin{equation*}
R(x, y, Q z, Q u)=R(x, y, z, u) \tag{2.2}
\end{equation*}
$$

We say that a manifold (M, g, Q) is in class \mathcal{L}_{2} if

$$
\begin{equation*}
R(Q x, Q y, Q z, Q u)=R(x, y, z, u) \tag{2.3}
\end{equation*}
$$

In [3] and [10] it is shown that $\mathcal{L}_{0} \subset \mathcal{L}_{1} \subset \mathcal{L}_{2}$ are valid for cases $n=3$ and $n=4$ respectively.

Further, we will find the sectional curvatures of special 2-planes of $T_{p} M$ when (M, g, Q) is a 3-dimensional manifold and also when (M, g, Q) is a 4-dimensional manifold. For this purpose, bearing in mind the wellknown linear properties of the curvature tensor R, we obtain the following identity

$$
\begin{array}{ll}
& R\left(Q x-x, Q x-Q^{2} x, Q x-x, Q x-Q^{2} x\right)= \\
\text { 2.4) } & R\left(Q x, Q^{2} x, Q x, Q^{2} x\right)+R(x, Q x, x, Q x)+R\left(x, Q^{2} x, x, Q^{2} x\right) \tag{2.4}\\
+ & 2 R\left(x, Q x, Q x, Q^{2} x\right)-2 R\left(x, Q^{2} x, Q x, Q^{2} x\right)-2 R\left(x, Q x, x, Q^{2} x\right) .
\end{array}
$$

If $\{x, y\}$ is a non-degenerate 2 -plane spanned by vectors $x, y \in T_{p} M$, then its sectional curvature is

$$
\begin{equation*}
\mu(x, y)=\frac{R(x, y, x, y)}{g(x, x) g(y, y)-g^{2}(x, y)} . \tag{2.5}
\end{equation*}
$$

3. Curvature properties of a 3-dimensional (M, g, Q)

First, we recall facts from [4] and [6], which are necessary for our consideration.

Let (M, g, Q) be a 3 -dimensional Riemannian manifold and let the local coordinates of Q be given by the circulant matrix

$$
\left(Q_{i}^{j}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

Hence Q satisfies

$$
\begin{equation*}
Q^{3}=\mathrm{id} . \tag{3.1}
\end{equation*}
$$

We suppose that g is a positive definite metric and the property (2.1) holds.
A basis of type $\left\{x, Q x, Q^{2} x\right\}$ of $T_{p} M$ is called a Q-basis. In this case we say that the vector x induces a Q-basis of $T_{p} M$.
The angles between the vectors of a Q-basis are

$$
\begin{equation*}
\angle(x, Q x)=\angle\left(Q x, Q^{2} x\right)=\angle\left(x, Q^{2} x\right)=\varphi, \tag{3.2}
\end{equation*}
$$

where $\varphi \in\left(0, \frac{2 \pi}{3}\right)$. Evidently, an orthogonal Q-basis exists ([6]).
Theorem 3.1. [4] Let (M, g, Q) satisfy (2.3). If a vector x induces a Q-basis, then for the sectional curvatures of the basic 2-planes we have

$$
\mu(x, Q x)=\mu\left(x, Q^{2} x\right)=\mu\left(Q x, Q^{2} x\right)
$$

Due to Theorem 3.1, $(M, g, Q) \in \mathcal{L}_{2}$ has only one basic sectional curvature $\mu(x, Q x)$. It depends only on $\varphi=\angle(x, Q x)$ and we denote it by $\mu(\varphi)$ (see [4]).

Further in this section, we consider a tetrahedron whose faces are constructed by the 2-planes $\{x, Q x\},\left\{Q x, Q^{2} x\right\}$ and $\left\{x, Q^{2} x\right\}$. The base of the tetrahedron is constructed by the 2-plane $\alpha=\left\{Q x-x, Q x-Q^{2} x\right\}$.

Without loss of generality we suppose that $g(x, x)=1$. Hence, using (2.1) and (3.2), we calculate

$$
\begin{gather*}
g(x, Q x)=\cos \varphi, \quad g\left(Q x-x, Q x-Q^{2} x\right)=1-\cos \varphi, \\
g(Q x-x, Q x-x)=g\left(Q x-Q^{2} x, Q x-Q^{2} x\right)=2-2 \cos \varphi, \tag{3.3}
\end{gather*}
$$

which implies that the base of the terahedron is an equilateral triangle.
In the next theorem, we obtain an expression of the sectional curvature of α by the sectional curvature of $\{x, Q x\}$ and by the sectional curvature of $\beta=\left\{Q^{2} x, Q x+x\right\}$. The 2-plane β determines a cross section of the tetrahedron.

Theorem 3.2. Let (M, g, Q) belong to \mathcal{L}_{2}. Then the curvature of the 2-plane $\alpha=\left\{Q x-x, Q x-Q^{2} x\right\}$ is

$$
\begin{equation*}
\mu(\alpha)=\frac{3(1+\cos \varphi)}{1-\cos \varphi} \mu(\varphi)-\frac{2(1+2 \cos \varphi)}{1-\cos \varphi} \mu(\beta) \tag{3.4}
\end{equation*}
$$

where $\varphi=\angle(x, Q x), \beta=\left\{Q^{2} x, Q x+x\right\}$.
Proof. The conditions (2.3) and (3.1) imply ([3]):

$$
\begin{equation*}
R_{1}=R(x, Q x, x, Q x)=R\left(x, Q^{2} x, x, Q^{2} x\right)=R\left(Q x, Q^{2} x, Q x, Q^{2} x\right) \tag{3.5}
\end{equation*}
$$

(3.6) $\quad R_{2}=R\left(x, Q x, x, Q^{2} x\right)=R\left(x, Q^{2} x, Q x, Q^{2} x\right)=R\left(x, Q x, Q^{2} x, Q x\right)$.

Then from (2.4) we get

$$
\begin{equation*}
R\left(Q x-x, Q x-Q^{2} x, Q x-x, Q x-Q^{2} x\right)=3 R_{1}-6 R_{2} . \tag{3.7}
\end{equation*}
$$

On the other hand, taking into account (3.5) and (3.6), we calculate

$$
\begin{equation*}
R\left(Q^{2} x, Q x+x, Q^{2} x, Q x+x\right)=2\left(R_{1}+R_{2}\right) . \tag{3.8}
\end{equation*}
$$

Together with (3.7), (3.8) yields

$$
\begin{align*}
& R\left(Q x-x, Q x-Q^{2} x, Q x-x, Q x-Q^{2} x\right) \\
& \quad=9 R_{1}-3 R\left(Q^{2} x, Q x+x, Q^{2} x, Q x+x\right) \tag{3.9}
\end{align*}
$$

Now, using (2.1) and (3.2), we find

$$
\begin{equation*}
g(Q x+x, Q x+x)=2+2 \cos \varphi, \quad g\left(Q^{2} x, Q x+x\right)=2 \cos \varphi . \tag{3.10}
\end{equation*}
$$

We apply equalities (3.3), (3.9) and (3.10) in (2.5), and obtain (3.4).
In our previous work, we obtain the following relation among the sectional curvatures of 2-planes of the type $\{x, Q x\}$, whose basis vectors x and $Q x$ determine angles $\varphi, \frac{\pi}{2}$ and $\frac{\pi}{3}$, respectively.

Theorem 3.3. [4] Let (M, g, Q) satisfy (2.3). If a vector x induces a Q-basis, then

$$
\mu(\varphi)=\frac{1-2 \cos \varphi}{1+\cos \varphi} \mu\left(\frac{\pi}{2}\right)+\frac{3 \cos \varphi}{1+\cos \varphi} \mu\left(\frac{\pi}{3}\right),
$$

where $\varphi=\angle(x, Q x)$.
From Theorem 3.2 and Theorem 3.3 we establish the following
Proposition 3.1. Let (M, g, Q) belong to \mathcal{L}_{2}. Then the curvatures of the 2-planes $\alpha=\left\{Q x-x, Q x-Q^{2} x\right\}$ and $\beta=\left\{Q^{2} x, x+Q x\right\}$ satisfy

$$
\mu(\alpha)=\frac{3}{1-\cos \varphi}\left((1-2 \cos \varphi) \mu\left(\frac{\pi}{2}\right)+3 \cos \varphi \mu\left(\frac{\pi}{3}\right)\right)-\frac{2(1+2 \cos \varphi)}{1-\cos \varphi} \mu(\beta) .
$$

Corollary 3.1. If (M, g, Q) belongs to \mathcal{L}_{2} and $\varphi=\frac{\pi}{2}$, then

$$
\mu(\alpha)=3 \mu\left(\frac{\pi}{2}\right)-2 \mu(\beta) .
$$

Further, for a manifold $(M, g, Q) \in \mathcal{L}_{1}$ we find an expression of $\mu(\alpha)$ by $\mu(\varphi)$. Also we get $\mu(\beta)$.

Theorem 3.4. Let (M, g, Q) belong to \mathcal{L}_{1}. Then the curvatures of the 2-planes $\alpha=\left\{Q x-x, Q x-Q^{2} x\right\}$ and $\beta=\left\{Q^{2} x, x+Q x\right\}$ are

$$
\begin{equation*}
\mu(\alpha)=3 \cot ^{2} \frac{\varphi}{2} \mu(\varphi), \quad \mu(\beta)=0 \tag{3.11}
\end{equation*}
$$

where $\varphi=\angle(x, Q x)$.
Proof. From (2.2), (3.5) and (3.6) we get $R_{1}=-R_{2}$. Thus, equalities (3.7) and (3.8) become

$$
\begin{align*}
& R\left(Q x-x, Q x-Q^{2} x, Q x-x, Q x-Q^{2} x\right)=9 R_{1}, \\
& R\left(Q^{2} x, Q x+x, Q^{2} x, Q x+x\right)=0 . \tag{3.12}
\end{align*}
$$

Now, applying (3.3), (3.10) and (3.12) in (2.5), we obtain (3.11).
Corollary 3.2. Let (M, g, Q) belong to \mathcal{L}_{1}. Then
i) the inequality $\mu(\alpha)>\mu(\varphi)$ holds;
ii) $\mu(\alpha)=3 \mu\left(\frac{\pi}{2}\right)$.

Proof. i) The cotangent function is decreasing in the interval $(0, \pi)$. Therefore, bearing in mind the condition $\varphi \in\left(0, \frac{2 \pi}{3}\right)$, we get $\cot \frac{\varphi}{2}>\frac{\sqrt{3}}{3}$. Hence, because of the first equality of (3.11), we have that $\mu(\alpha)>\mu(\varphi)$ for every $\varphi \in\left(0, \frac{2 \pi}{3}\right)$.
ii) If we put $\varphi=\frac{\pi}{2}$ into (3.11), then the proof follows.
4. Curvature properties of a 4-dimensional (M, g, Q)

In the beginning of this section we recall some basic facts for a 4-dimensional (M, g, Q), known from [2] and [10].

Let (M, g, Q) be a 4 -dimensional Riemannian manifold and let the local coordinates of Q be given by the circulant matrix

$$
\left(Q_{i}^{j}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) .
$$

Hence Q satisfies

$$
\begin{equation*}
Q^{4}=\mathrm{id}, \quad Q^{2} \neq \pm \mathrm{id} \tag{4.1}
\end{equation*}
$$

We assume that g is a positive definite metric and the property (2.1) is valid.

A basis of type $\left\{x, Q x, Q^{2} x, Q^{3} x\right\}$ of $T_{p} M$ is called a Q-basis. In this case we say that the vector x induces a Q-basis of $T_{p} M$. The angles between the vectors of a Q-basis are as follows

$$
\begin{align*}
& \angle(x, Q x)=\angle\left(Q x, Q^{2} x\right)=\angle\left(x, Q^{3} x\right)=\angle\left(Q^{2} x, Q^{3} x\right)=\varphi, \tag{4.2}\\
& \angle\left(x, Q^{2} x\right)=\angle\left(Q x, Q^{3} x\right)=\theta
\end{align*}
$$

where $\varphi \in(0, \pi), \theta \in(0, \pi)$.
In [10], it is proved the inequality $3-4 \cos \varphi+\cos \theta<0$ and the existence of an orthogonal Q-basis.

Theorem 4.1. [2] Let (M, g, Q) belong to \mathcal{L}_{2}. If a vector x induces a Q-basis, then for the sectional curvatures of the basic 2-planes we have

$$
\begin{aligned}
\mu(x, Q x) & =\mu\left(Q x, Q^{2} x\right)=\mu\left(Q^{2} x, Q^{3} x\right)=\mu\left(Q^{3} x, x\right) \\
\mu\left(x, Q^{2} x\right) & =\mu\left(Q x, Q^{3} x\right)
\end{aligned}
$$

Due to Theorem 4.1 there are only two basic sectional curvatures. They are $\mu(x, Q x)$ and $\mu\left(x, Q^{2} x\right)$. The sectional curvature $\mu(x, Q x)$ depends on $\varphi=\angle(x, Q x)$. We denote $\mu(\varphi)=\mu(x, Q x)$.

Let x induce a Q-basis of $T_{p} M$. Then the vectors $x, Q x$ and $Q^{2} x$ determine a tetrahedron, whose faces are constructed by the 2-planes $\{x, Q x\}$, $\left\{Q x, Q^{2} x\right\}$ and $\left\{x, Q^{2} x\right\}$. The base of the tetrahedron is constructed by the 2-plane $\alpha=\left\{Q x-x, Q x-Q^{2} x\right\}$.

Without loss of generality we suppose $g(x, x)=1$. Thus, it follows from (2.1) and (4.2) that:

$$
\begin{align*}
& g(x, Q x)=\cos \varphi, \quad g\left(x, Q^{2} x\right)=\cos \theta \\
& g\left(Q x-x, Q x-Q^{2} x\right)=1-2 \cos \varphi+\cos \theta \tag{4.3}\\
& g(Q x-x, Q x-x)=g\left(Q x-Q^{2} x, Q x-Q^{2} x\right)=2-2 \cos \varphi
\end{align*}
$$

The latter equalities show that the base of the tetrahedron is an isosceles triangle. In the following theorems, we obtain an expression of the sectional curvature of α by the sectional curvatures of $\{x, Q x\}$ and $\left\{x, Q^{2} x\right\}$, and also by the sectional curvatures of $\gamma=\left\{Q^{2} x, x+Q x\right\}, \delta=\{x, Q x+$ $\left.Q^{2} x\right\}$ and $\sigma=\left\{Q x, x+Q^{2} x\right\}$. The 2-planes γ, δ and σ determine cross sections of the tetrahedron.

Theorem 4.2. Let (M, g, Q) belong to \mathcal{L}_{2}. Then the curvature of the 2-plane $\alpha=\left\{Q x-x, Q x-Q^{2} x\right\}$ is

$$
\begin{align*}
\mu(\alpha) & =\frac{1}{(1-\cos \theta)(3-4 \cos \varphi+\cos \theta)}\left(6\left(1-\cos ^{2} \varphi\right) \mu(\varphi)\right. \\
& +3\left(1-\cos ^{2} \theta\right) \mu(\beta)-2\left(1+\cos \theta-2 \cos ^{2} \varphi\right) \mu(\sigma) \tag{4.4}\\
& \left.-\left(2+2 \cos \varphi-(\cos \varphi+\cos \theta)^{2}\right)(\mu(\gamma)+\mu(\delta))\right)
\end{align*}
$$

where $\beta=\left\{x, Q^{2} x\right\}, \gamma=\left\{Q^{2} x, Q x+x\right\}, \delta=\left\{x, Q x+Q^{2} x\right\}, \sigma=\{Q x, x+$ $\left.Q^{2} x\right\}$.

Proof. We denote

$$
\begin{align*}
& R_{1}=R(x, Q x, x, Q x), \quad R_{2}=R\left(x, Q^{2} x, x, Q^{2} x\right) \\
& R_{3}=R\left(x, Q x, Q^{2} x, x\right), \quad R_{4}=R\left(x, Q x, Q x, Q^{2} x\right) \tag{4.5}\\
& R_{5}=R\left(x, Q^{2} x, Q^{2} x, Q x\right)
\end{align*}
$$

Then, from (2.3), (2.4) and (4.1), we get
(4.6) $R\left(Q x-x, Q x-Q^{2} x, Q x-x, Q x-Q^{2} x\right)=2 R_{1}+2 R_{3}+R_{2}+2 R_{4}+2 R_{5}$,

On the other hand, using (4.5), we calculate

$$
\begin{align*}
& R\left(Q^{2} x, Q x+x, Q^{2} x, Q x+x\right)=R_{1}+R_{2}-2 R_{5}, \\
& R\left(x, Q x+Q^{2} x, x, Q x+Q^{2} x\right)=R_{1}+R_{2}-2 R_{3}, \tag{4.7}\\
& R\left(Q x, x+Q^{2} x, Q x, x+Q^{2} x\right)=2 R_{1}-2 R_{4} .
\end{align*}
$$

Applying (4.7) in (4.6) we find

$$
\begin{align*}
R\left(Q x-x, Q x-Q^{2} x, Q x-x,\right. & \left.Q x-Q^{2} x\right)=6 R_{1}+3 R_{2} \\
& -R\left(Q^{2} x, Q x+x, Q^{2} x, Q x+x\right) \\
& -R\left(x, Q x+Q^{2} x, x, Q x+Q^{2} x\right) \tag{4.8}\\
& \left.-R\left(Q x, x+Q^{2} x, Q x, x+Q^{2} x\right)\right) .
\end{align*}
$$

From (2.1), (4.2) and (4.3) we have

$$
\begin{align*}
& g(Q x+x, Q x+x)=g\left(Q x+Q^{2} x, Q x+Q^{2} x\right)=2+2 \cos \varphi \\
& g\left(x, Q x+Q^{2} x\right)=g\left(Q^{2} x, Q x+x\right)=\cos \theta+\cos \varphi \tag{4.9}\\
& g\left(x+Q^{2} x, x+Q^{2} x\right)=2+2 \cos \theta, \quad g\left(Q x, x+Q^{2} x\right)=2 \cos \varphi
\end{align*}
$$

Therefore, (2.5), (4.3), (4.8) and (4.9) imply (4.4).

Corollary 4.1. Let (M, g, Q) belong to \mathcal{L}_{2}. If $\varphi=\theta$, then

$$
\begin{aligned}
\mu(\alpha) & =\frac{1}{3(1-\cos \varphi)}((1+\cos \varphi)(6 \mu(\varphi)+3 \mu(\beta)) \\
& -2(1+2 \cos \varphi)(\mu(\gamma)+\mu(\delta)+\mu(\sigma))) .
\end{aligned}
$$

In particular, if $\varphi=\theta=\frac{\pi}{2}$, then

$$
\mu(\alpha)=\frac{1}{3}\left(6 \mu\left(\frac{\pi}{2}\right)+3 \mu(\beta)-2 \mu(\gamma)-2 \mu(\delta)-2 \mu(\sigma)\right) .
$$

Now, for a manifold $(M, g, Q) \in \mathcal{L}_{1}$ we find expressions of $\mu(\alpha), \mu(\beta)$, $\mu(\sigma), \mu(\gamma)$ and $\mu(\delta)$ by φ, θ and $\mu(\varphi)$.

Theorem 4.3. Let (M, g, Q) belong to \mathcal{L}_{1}. Then the curvatures of the 2planes $\alpha=\left\{Q x-x, Q x-Q^{2} x\right\}, \beta=\left\{x, Q^{2} x\right\}, \gamma=\left\{Q^{2} x, Q x+x\right\}, \delta=$ $\left\{x, Q x+Q^{2} x\right\}$ and $\sigma=\left\{Q x, x+Q^{2} x\right\}$ are

$$
\begin{gather*}
\mu(\alpha)=\frac{4(1+\cos \varphi)}{3-4 \cos \varphi+\cos \theta} \mu(\varphi), \quad \mu(\beta)=\mu(\sigma)=0 \\
\mu(\gamma)=\mu(\delta)=\frac{1-\cos ^{2} \varphi}{2+2 \cos \varphi+(\cos \varphi-\cos \theta)^{2}} \mu(\varphi) . \tag{4.10}
\end{gather*}
$$

Proof. By using (2.2) and (4.5) we get that $R_{1}=R_{4}$ and $R_{2}=R_{3}=R_{5}=0$. Thus, from (4.6) and (4.7), we have

$$
\begin{aligned}
& R\left(Q x-x, Q x-Q^{2} x, Q x-x, Q x-Q^{2} x\right)=4 R_{1}, \\
& R\left(Q x, x+Q^{2} x, Q x, x+Q^{2} x\right)=0, \\
& R\left(x, Q x+Q^{2} x, x, Q x+Q^{2} x\right)=R\left(Q^{2} x, Q x+x, Q^{2} x, Q x+x\right)=R_{1} .
\end{aligned}
$$

We apply the latter equalities, (4.3) and (4.9) in (2.5) and obtain (4.10).

Finally, due to Theorem 4.3, we state the following
Corollary 4.2. Let (M, g, Q) belong to \mathcal{L}_{1}. If $\varphi=\theta$, then

$$
\mu(\alpha)=\frac{4}{3} \cot ^{2} \frac{\varphi}{2} \mu(\varphi), \quad \mu(\gamma)=\mu(\delta)=\frac{1-\cos ^{2} \varphi}{2+2 \cos \varphi} \mu(\varphi) .
$$

In particular, if $\varphi=\theta=\frac{\pi}{2}$, then

$$
\mu(\alpha)=\frac{4}{3} \mu\left(\frac{\pi}{2}\right), \quad \mu(\gamma)=\mu(\delta)=\frac{1}{2} \mu\left(\frac{\pi}{2}\right) .
$$

This work is supported by project "17-12 Supporting Intellectual Property" of the Center for Research, Technology Transfer and Intellectual Property Protection, Agricultural University of Plovdiv, Bulgaria.

References

[1] I. Dokuzova: A note on Schure's theorem in Riemannian manifolds with an almost complex structure, J. Tech. Univ. Plovdiv Fundam. Sci. Appl. Ser. A Pure Appl. Math., 7 (1999), 73-78.
[2] I. DOKUZOVA: Curvature properties of four-dimensional Riemannian manifolds with a circulant structure, J. Geom. 108(2) (2017), 517-527.
[3] I. DokuZova: Almost Einstein manifolds with circulant structures, J. Korean Math. Soc., 54(5) (2017), 1441-1456.
[4] I. Dokuzova, D. Razpopov, G. Dzhelepov: Three-dimensional Riemannian manifolds with circulant structures, Adv. Math., Sci. J., 7(1) (2018), 9-16.
[5] S. L. DruţǍ-Romanuic: Para-Kähler tangent bundles of constant paraholomorphic sectional curvatures, Bull. Iranian Math. Soc., 38(4) (2012), 955-972.
[6] G. Dzhelepov, I. Dokuzova, D. Razpopov: On a three-dimensional Riemannian manifold with an additional structure, Plovdiv. Univ. Paisii Khilendarski Nauchn. Trud. Mat., 38(3) (2011), 17-27.
[7] A. Gray, L. VANHECKE: Almost Hermitian manifolds with constant holomorphic sectional curvature, Appl. Math., 104 (1979), 170-179.
[8] D. Gribacheva: Curvature properties of two Naveira classes of Riemannian product manifolds, Plovdiv. Univ. Paisǐ̌ Khilend. Nauchn. Trud. Mat., 39(3) (2012), 31-42.
[9] G. NAKOVA: Totally umbilical radical transversal lightlike hypersurfaces of KählerNorden manifolds of constant totally real sectional curvatures, Bull. Iranian Math. Soc., 42(4) (2016), 839-854.
[10] D. RAZPOPOV: Four-dimensional Riemannian manifolds with two circulant structures, In: Proc. of 44-th Spring Conf. of UBM, SOK "Kamchia", Bulgaria (2015), 179-185.
[11] H. TAŞTAN: Some characterizations of almost Hermitian manifolds, Int. Electron J. Geom., 5(2) (2012), 59-66.

Department of Mathematics and Informatics
Agricultural University of Plovdiv
12 Mendeleev Blvd, 4000 Plovdiv, Bulgaria
E-mail address: razpopov@au-plovdiv.bg
Department of Mathematics and Informatics
Agricultural University of Plovdiv
12 Mendeleev BlVd, 4000 Plovdiv, Bulgaria
E-mail address: dzhelepov@au-plovdiv.bg

[^0]: ${ }^{1}$ corresponding author

