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CURVATURE PROPERTIES OF RIEMANNIAN MANIFOLDS WITH
CIRCULANT STRUCTURES

DIMITAR RAZPOPOV1 AND GEORGI DZHELEPOV

ABSTRACT. We study a Riemannian manifold M equipped with a circu-
lant structure Q, which is an isometry with respect to the metric. We con-
sider two types of such manifolds: a 3-dimensional manifold M where
the third power of Q is the identity, and a 4-dimensional manifold M

where the fourth power of Q is the identity. In a single tangent space
of M we have a special tetrahedron constructed by vectors of a Q-basis.
The aim of the present paper is to find relations among the sectional cur-
vatures of the 2-planes associated with the four faces of this tetrahedron
and its cross sections passing through the medians and the edges of these
faces.

1. INTRODUCTION

The study of pseudo-Riemannian manifolds with additional structures
in differential geometry is of great interest to many mathematicians. Sub-
stantial results are associated with the sectional curvatures of some char-
acteristic 2-planes, determined in every tangent space of the manifold (for
instance [1], [5], [7], [8], [9], [11]).

In the present paper, we continue our research on the manifolds with ad-
ditional structures, introduced in [6] and [10]. We consider a Riemannian
manifold M equipped with a circulant structure Q, which is an isometry
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with respect to the metric g. We study two classes of such manifolds deter-
mined by special properties of the curvature tensor. We find expressions
of the curvatures of special 2-planes formed by vectors in a tangent space
TpM , p ∈M .

First, we consider a 3-dimensional manifold (M, g,Q) where the third
power of Q is the identity. In a single tangent space of (M, g,Q) we have
a special tetrahedron constructed by vectors of a Q-basis of TpM . We find
a relation among the sectional curvatures generated by the four faces of
the tetrahedron and its cross sections passing through the medians and
the edges of these faces. Farther, we consider a 4-dimensional manifold
(M, g,Q) where the fourth power of Q is the identity. We find a relation
among the sectional curvatures of the faces and some cross sections of a
tetrahedron constructed by vectors of a Q-basis of TpM . Let us note that
the obtained results for (M, g,Q) in the case when n = 4 are not similar to
the results at n = 3.

2. PRELIMINARIES

We consider a n-dimensional Riemannian manifold M with a metric g,
equipped with an endomorphism Q in TpM , such that Qn = id, Q 6= ±id.
Moreover, we suppose that Q is a circulant structure, i.e. the matrix of the
components of Q in some basis is circulant. We assume that g is positive
definite metric and Q is compatible with g such that

(2.1) g(Qx,Qy) = g(x, y).

Here and anywhere in this work x, y, z, u will stand for arbitrary elements
of the algebra of the smooth vector fields on M or vectors in TpM .

We denote by (M, g,Q) the manifold M equipped with the metric g and
the structure Q.

Let ∇ be the Riemannian connection of the metric g on (M, g,Q). The
curvature tensor R of ∇ is determined by

R(x, y)z = ∇x∇yz −∇y∇xz −∇[x,y]z.

The tensor of type (0, 4) associated with R is defined by the identity

R(x, y, z, u) = g(R(x, y)z, u).
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We say that a manifold (M, g,Q) is in class L0 if the structure Q is par-
allel with respect to g, i.e., ∇Q = 0.

We say that a manifold (M, g,Q) is in class L1 if

(2.2) R(x, y,Qz,Qu) = R(x, y, z, u).

We say that a manifold (M, g,Q) is in class L2 if

(2.3) R(Qx,Qy,Qz,Qu) = R(x, y, z, u).

In [3] and [10] it is shown that L0 ⊂ L1 ⊂ L2 are valid for cases n = 3

and n = 4 respectively.
Further, we will find the sectional curvatures of special 2-planes of TpM

when (M, g,Q) is a 3-dimensional manifold and also when (M, g,Q) is
a 4-dimensional manifold. For this purpose, bearing in mind the well-
known linear properties of the curvature tensor R, we obtain the following
identity

R(Qx− x,Qx−Q2x,Qx− x,Qx−Q2x) =

R(Qx,Q2x,Qx,Q2x) +R(x,Qx, x,Qx) +R(x,Q2x, x,Q2x)

+ 2R(x,Qx,Qx,Q2x)− 2R(x,Q2x,Qx,Q2x)− 2R(x,Qx, x,Q2x).

(2.4)

If {x, y} is a non-degenerate 2-plane spanned by vectors x, y ∈ TpM ,
then its sectional curvature is

(2.5) µ(x, y) =
R(x, y, x, y)

g(x, x)g(y, y)− g2(x, y)
.

3. CURVATURE PROPERTIES OF A 3-DIMENSIONAL (M, g,Q)

First, we recall facts from [4] and [6], which are necessary for our con-
sideration.

Let (M, g,Q) be a 3-dimensional Riemannian manifold and let the local
coordinates of Q be given by the circulant matrix

(Qj
i ) =

0 1 0

0 0 1

1 0 0

 .

Hence Q satisfies

(3.1) Q3 = id.
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We suppose that g is a positive definite metric and the property (2.1) holds.
A basis of type {x,Qx,Q2x} of TpM is called a Q-basis. In this case we

say that the vector x induces a Q-basis of TpM .
The angles between the vectors of a Q-basis are

(3.2) ∠(x,Qx) = ∠(Qx,Q2x) = ∠(x,Q2x) = ϕ,

where ϕ ∈ (0, 2π
3

)
. Evidently, an orthogonal Q-basis exists ([6]).

Theorem 3.1. [4] Let (M, g,Q) satisfy (2.3). If a vector x induces a Q-basis,
then for the sectional curvatures of the basic 2-planes we have

µ(x,Qx) = µ(x,Q2x) = µ(Qx,Q2x).

Due to Theorem 3.1, (M, g,Q) ∈ L2 has only one basic sectional curva-
ture µ(x,Qx). It depends only on ϕ = ∠(x,Qx) and we denote it by µ(ϕ)
(see [4]).

Further in this section, we consider a tetrahedron whose faces are con-
structed by the 2-planes {x,Qx}, {Qx,Q2x} and {x,Q2x}. The base of the
tetrahedron is constructed by the 2-plane α = {Qx− x,Qx−Q2x}.

Without loss of generality we suppose that g(x, x) = 1. Hence, using
(2.1) and (3.2), we calculate

g(x,Qx) = cosϕ, g(Qx− x,Qx−Q2x) = 1− cosϕ,

g(Qx− x,Qx− x) = g(Qx−Q2x,Qx−Q2x) = 2− 2 cosϕ,
(3.3)

which implies that the base of the terahedron is an equilateral triangle.
In the next theorem, we obtain an expression of the sectional curvature

of α by the sectional curvature of {x,Qx} and by the sectional curvature
of β = {Q2x,Qx + x}. The 2-plane β determines a cross section of the
tetrahedron.

Theorem 3.2. Let (M, g,Q) belong to L2. Then the curvature of the 2-plane
α = {Qx− x,Qx−Q2x} is

µ(α) =
3(1 + cosϕ)

1− cosϕ
µ(ϕ)− 2(1 + 2 cosϕ)

1− cosϕ
µ(β),(3.4)

where ϕ = ∠(x,Qx), β = {Q2x,Qx+ x}.

Proof. The conditions (2.3) and (3.1) imply ([3]):

(3.5) R1 = R(x,Qx, x,Qx) = R(x,Q2x, x,Q2x) = R(Qx,Q2x,Qx,Q2x),
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R2 = R(x,Qx, x,Q2x) = R(x,Q2x,Qx,Q2x) = R(x,Qx,Q2x,Qx).(3.6)

Then from (2.4) we get

(3.7) R(Qx− x,Qx−Q2x,Qx− x,Qx−Q2x) = 3R1 − 6R2.

On the other hand, taking into account (3.5) and (3.6), we calculate

(3.8) R(Q2x,Qx+ x,Q2x,Qx+ x) = 2(R1 +R2).

Together with (3.7), (3.8) yields

R(Qx− x,Qx−Q2x,Qx− x,Qx−Q2x)

= 9R1 − 3R(Q2x,Qx+ x,Q2x,Qx+ x).
(3.9)

Now, using (2.1) and (3.2), we find

g(Qx+ x,Qx+ x) = 2 + 2 cosϕ, g(Q2x,Qx+ x) = 2 cosϕ.(3.10)

We apply equalities (3.3), (3.9) and (3.10) in (2.5), and obtain (3.4). �

In our previous work, we obtain the following relation among the sec-
tional curvatures of 2-planes of the type {x,Qx}, whose basis vectors x
and Qx determine angles ϕ, π

2
and π

3
, respectively.

Theorem 3.3. [4] Let (M, g,Q) satisfy (2.3). If a vector x induces a Q-basis,
then

µ(ϕ) =
1− 2 cosϕ

1 + cosϕ
µ(
π

2
) +

3 cosϕ

1 + cosϕ
µ(
π

3
),

where ϕ = ∠(x,Qx).

From Theorem 3.2 and Theorem 3.3 we establish the following

Proposition 3.1. Let (M, g,Q) belong to L2. Then the curvatures of the
2-planes α = {Qx− x,Qx−Q2x} and β = {Q2x, x+Qx} satisfy

µ(α) =
3

1− cosϕ

(
(1− 2 cosϕ)µ(

π

2
) + 3 cosϕµ(

π

3
)
)
− 2(1 + 2 cosϕ)

1− cosϕ
µ(β).

Corollary 3.1. If (M, g,Q) belongs to L2 and ϕ = π
2
, then

µ(α) = 3µ(
π

2
)− 2µ(β).

Further, for a manifold (M, g,Q) ∈ L1 we find an expression of µ(α) by
µ(ϕ). Also we get µ(β).
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Theorem 3.4. Let (M, g,Q) belong to L1. Then the curvatures of the 2-planes
α = {Qx− x,Qx−Q2x} and β = {Q2x, x+Qx} are

µ(α) = 3 cot2
ϕ

2
µ(ϕ), µ(β) = 0,(3.11)

where ϕ = ∠(x,Qx).

Proof. From (2.2), (3.5) and (3.6) we get R1 = −R2. Thus, equalities (3.7)
and (3.8) become

R(Qx− x,Qx−Q2x,Qx− x,Qx−Q2x) = 9R1,

R(Q2x,Qx+ x,Q2x,Qx+ x) = 0.
(3.12)

Now, applying (3.3), (3.10) and (3.12) in (2.5), we obtain (3.11). �

Corollary 3.2. Let (M, g,Q) belong to L1. Then

i) the inequality µ(α) > µ(ϕ) holds;
ii) µ(α) = 3µ(π

2
).

Proof. i) The cotangent function is decreasing in the interval (0, π). There-
fore, bearing in mind the condition ϕ ∈ (0, 2π

3

)
, we get cot ϕ

2
>

√
3
3
. Hence,

because of the first equality of (3.11), we have that µ(α) > µ(ϕ) for every
ϕ ∈ (0, 2π

3

)
.

ii) If we put ϕ = π
2

into (3.11), then the proof follows. �

4. CURVATURE PROPERTIES OF A 4-DIMENSIONAL (M, g,Q)

In the beginning of this section we recall some basic facts for a 4-dimen-
sional (M, g,Q), known from [2] and [10].

Let (M, g,Q) be a 4-dimensional Riemannian manifold and let the local
coordinates of Q be given by the circulant matrix

(Qj
i ) =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 .

Hence Q satisfies

(4.1) Q4 = id, Q2 6= ±id.
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We assume that g is a positive definite metric and the property (2.1) is
valid.

A basis of type {x,Qx,Q2x,Q3x} of TpM is called a Q-basis. In this case
we say that the vector x induces a Q-basis of TpM . The angles between
the vectors of a Q-basis are as follows

∠(x,Qx) = ∠(Qx,Q2x) = ∠(x,Q3x) = ∠(Q2x,Q3x) = ϕ,

∠(x,Q2x) = ∠(Qx,Q3x) = θ,
(4.2)

where ϕ ∈ (0, π), θ ∈ (0, π).

In [10], it is proved the inequality 3−4 cosϕ+cos θ < 0 and the existence
of an orthogonal Q-basis.

Theorem 4.1. [2] Let (M, g,Q) belong to L2. If a vector x induces a Q-basis,
then for the sectional curvatures of the basic 2-planes we have

µ(x,Qx) = µ(Qx,Q2x) = µ(Q2x,Q3x) = µ(Q3x, x),

µ(x,Q2x) = µ(Qx,Q3x).

Due to Theorem 4.1 there are only two basic sectional curvatures. They
are µ(x,Qx) and µ(x,Q2x). The sectional curvature µ(x,Qx) depends on
ϕ = ∠(x,Qx). We denote µ(ϕ) = µ(x,Qx).

Let x induce a Q-basis of TpM . Then the vectors x, Qx and Q2x deter-
mine a tetrahedron, whose faces are constructed by the 2-planes {x,Qx},
{Qx,Q2x} and {x,Q2x}. The base of the tetrahedron is constructed by the
2-plane α = {Qx− x,Qx−Q2x}.

Without loss of generality we suppose g(x, x) = 1. Thus, it follows from
(2.1) and (4.2) that:

g(x,Qx) = cosϕ, g(x,Q2x) = cos θ,

g(Qx− x,Qx−Q2x) = 1− 2 cosϕ+ cos θ,(4.3)

g(Qx− x,Qx− x) = g(Qx−Q2x,Qx−Q2x) = 2− 2 cosϕ .

The latter equalities show that the base of the tetrahedron is an isosceles
triangle. In the following theorems, we obtain an expression of the sec-
tional curvature of α by the sectional curvatures of {x,Qx} and {x,Q2x},
and also by the sectional curvatures of γ = {Q2x, x + Qx}, δ = {x,Qx +

Q2x} and σ = {Qx, x + Q2x}. The 2-planes γ, δ and σ determine cross
sections of the tetrahedron.
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Theorem 4.2. Let (M, g,Q) belong to L2. Then the curvature of the 2-plane
α = {Qx− x,Qx−Q2x} is

µ(α) =
1

(1− cos θ)(3− 4 cosϕ+ cos θ)

(
6(1− cos2 ϕ)µ(ϕ)

+ 3(1− cos2 θ)µ(β)− 2(1 + cos θ − 2 cos2 ϕ)µ(σ)

−
(
2 + 2 cosϕ− (cosϕ+ cos θ)2

)(
µ(γ) + µ(δ)

))
,

(4.4)

where β = {x,Q2x}, γ = {Q2x,Qx + x}, δ = {x,Qx +Q2x}, σ = {Qx, x +

Q2x}.

Proof. We denote

R1 = R(x,Qx, x,Qx), R2 = R(x,Q2x, x,Q2x),

R3 = R(x,Qx,Q2x, x), R4 = R(x,Qx,Qx,Q2x),

R5 = R(x,Q2x,Q2x,Qx).

(4.5)

Then, from (2.3), (2.4) and (4.1), we get

(4.6) R(Qx−x,Qx−Q2x,Qx−x,Qx−Q2x) = 2R1+2R3+R2+2R4+2R5,

On the other hand, using (4.5), we calculate

R(Q2x,Qx+ x,Q2x,Qx+ x) = R1 +R2 − 2R5,

R(x,Qx+Q2x, x,Qx+Q2x) = R1 +R2 − 2R3,(4.7)

R(Qx, x+Q2x,Qx, x+Q2x) = 2R1 − 2R4.

Applying (4.7) in (4.6) we find

R(Qx− x,Qx−Q2x,Qx− x,Qx−Q2x) = 6R1 + 3R2

−R(Q2x,Qx+ x,Q2x,Qx+ x)

−R(x,Qx+Q2x, x,Qx+Q2x)

−R(Qx, x+Q2x,Qx, x+Q2x)).

(4.8)

From (2.1), (4.2) and (4.3) we have

g(Qx+ x,Qx+ x) = g(Qx+Q2x,Qx+Q2x) = 2 + 2 cosϕ,

g(x,Qx+Q2x) = g(Q2x,Qx+ x) = cos θ + cosϕ,(4.9)

g(x+Q2x, x+Q2x) = 2 + 2 cos θ, g(Qx, x+Q2x) = 2 cosϕ.

Therefore, (2.5), (4.3), (4.8) and (4.9) imply (4.4). �
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Corollary 4.1. Let (M, g,Q) belong to L2. If ϕ = θ, then

µ(α) =
1

3(1− cosϕ)

(
(1 + cosϕ)

(
6µ(ϕ) + 3µ(β)

)
− 2(1 + 2 cosϕ)

(
µ(γ) + µ(δ) + µ(σ)

))
.

In particular, if ϕ = θ = π
2
, then

µ(α) =
1

3

(
6µ(

π

2
) + 3µ(β)− 2µ(γ)− 2µ(δ)− 2µ(σ)

)
.

Now, for a manifold (M, g,Q) ∈ L1 we find expressions of µ(α), µ(β),
µ(σ), µ(γ) and µ(δ) by ϕ, θ and µ(ϕ).

Theorem 4.3. Let (M, g,Q) belong to L1. Then the curvatures of the 2-
planes α = {Qx − x,Qx − Q2x}, β = {x,Q2x}, γ = {Q2x,Qx + x}, δ =

{x,Qx+Q2x} and σ = {Qx, x+Q2x} are

µ(α) =
4(1 + cosϕ)

3− 4 cosϕ+ cos θ
µ(ϕ), µ(β) = µ(σ) = 0,

µ(γ) = µ(δ) =
1− cos2 ϕ

2 + 2 cosϕ+ (cosϕ− cos θ)2
µ(ϕ).

(4.10)

Proof. By using (2.2) and (4.5) we get thatR1 = R4 andR2 = R3 = R5 = 0.

Thus, from (4.6) and (4.7), we have

R(Qx− x,Qx−Q2x,Qx− x,Qx−Q2x) = 4R1,

R(Qx, x+Q2x,Qx, x+Q2x) = 0,

R(x,Qx+Q2x, x,Qx+Q2x) = R(Q2x,Qx+ x,Q2x,Qx+ x) = R1.

We apply the latter equalities, (4.3) and (4.9) in (2.5) and obtain (4.10).
�

Finally, due to Theorem 4.3, we state the following

Corollary 4.2. Let (M, g,Q) belong to L1. If ϕ = θ, then

µ(α) =
4

3
cot2

ϕ

2
µ(ϕ), µ(γ) = µ(δ) =

1− cos2 ϕ

2 + 2 cosϕ
µ(ϕ).

In particular, if ϕ = θ = π
2
, then

µ(α) =
4

3
µ(
π

2
), µ(γ) = µ(δ) =

1

2
µ(
π

2
).
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