Advances in Mathematics: Scientific Journal 7 (2018), no.1, 9-16
ISSN 1857-8365 printed version
ISSN 1857-8438 electronic version
UDC: 514.764.2:511.82

THREE-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH CIRCULANT STRUCTURES

IVA DOKUZOVA ${ }^{1}$, DIMITAR RAZPOPOV AND GEORGI DZHELEPOV

Abstract

We consider a 3-dimensional Riemannian manifold M with two circulant structures - a metric g and an additional structure q with $q^{3}=$ id. The structure q is compatible with g such that an isometry is induced in any tangent space of M. We obtain some curvature properties of this manifold (M, g, q) and give an example of such a manifold.

1. Introduction

Circulant matrices occur in many areas of the applied mathematics. For instance, they are particulary useful in the Vibration analysis, Linear codes, Geometry, Graph theory, etc. (see [3], [4], [6], [8]). This motivates us to equip differentiable manifolds with additional structures which are represented by circulant matrices.

In differential geometry, essential results are associated with the sectional curvatures of some characteristic 2-planes of the tangent space of the manifolds with additional structures, (for example [2], [5], [7]). Another important problem is the obtaining of explicit examples of the constructed manifolds.

The main aim of the present paper is to study the differential geometry of 3-dimensional Riemannian manifolds equipped with an endomorphism q whose third power is the identity. Moreover, the metric g and the structure q are represented by circulant matrices.

The paper is organized as follows. In Sect. 2, we consider a 3-dimensional Riemannian manifold M with a circulant metric g and a circulant structure q satisfying $q^{3}=$ id, i.e. a manifold (M, g, q). Also we recall necessary facts about such manifolds and about a q-basis of the tangent space $T_{p} M, p \in M$. In Sect. 3, we calculate the components of the curvature tensor R with respect to the Levi-Civita connection of g. In Sect. 4, we consider two special properties of R with respect to q and the consequences for some sectional curvatures. In Sect. 5, we obtain an explicit example.

[^0]
2. Preliminaries

Let M be a 3-dimensional manifold with a Riemannian metric g. Let the components of the metric g at an arbitrary point $p\left(X^{1}, X^{2}, X^{3}\right) \in M$ form the following circulant matrix

$$
\left(g_{i j}\right)=\left(\begin{array}{lll}
A & B & B \tag{2.1}\\
B & A & B \\
B & B & A
\end{array}\right),
$$

where A and B are smooth functions of X^{1}, X^{2}, X^{3}.
We assume that

$$
\begin{equation*}
A>B>0 \tag{2.2}
\end{equation*}
$$

Then the conditions to be a positive definite metric g are satisfied:

$$
\begin{aligned}
& A>0, \quad\left|\begin{array}{ll}
A & B \\
B & A
\end{array}\right|=(A-B)(A+B)>0 \\
& \left|\begin{array}{lll}
A & B & B \\
B & A & B \\
B & B & A
\end{array}\right|=(A-B)^{2}(A+2 B)>0
\end{aligned}
$$

Let q be an endomorphism in the tangent space $T_{p} M$, whose coordinate matrix with respect to a basis $\left\{e_{i}\right\}$ of $T_{p} M$ is

$$
\left(q_{i}^{\cdot j}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \tag{2.3}\\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Then

$$
q^{3}=\mathrm{id}
$$

We denote by (M, g, q) the manifold M equipped with the metric g and the structure q, which are defined by (2.1) - (2.3).

Further, x, y, z, u will stand for arbitrary elements of the algebra on the smooth vector fields on M or vectors in the tangent space $T_{p} M$. The Einstein summation convention is used, the range of the summation indices being always $\{1,2,3\}$.

In [1] it is proved that the structure q of the manifold (M, g, q) is an isometry with respect to the metric g, i.e.

$$
\begin{equation*}
g(q x, q y)=g(x, y) \tag{2.4}
\end{equation*}
$$

Definition 2.1. A basis of type $\left\{x, q x, q^{2} x\right\}$ of $T_{p} M$ is called a q-basis. In this case we say that the vector x induces a q-basis of $T_{p} M$. Similarly, a basis $\{x, q x\}$ of a 2-plane $\alpha=\{x, q x\}$ is called a q-basis.

In [1] it is verified that
(i) A vector $x=\left(x^{1}, x^{2}, x^{3}\right)$ induces a q-basis in $T_{p} M$ if and only if

$$
3 x^{1} x^{2} x^{3} \neq\left(x^{1}\right)^{3}+\left(x^{2}\right)^{3}+\left(x^{3}\right)^{3} ;
$$

(ii) If a vector x induces a q-basis of $T_{p} M$ and $\varphi=\angle(x, q x)$, then

$$
\angle(x, q x)=\angle\left(q x, q^{2} x\right)=\angle\left(x, q^{2} x\right)=\varphi, \quad \varphi \in\left(0, \frac{2 \pi}{3}\right) ;
$$

(iii) An orthogonal q-basis of $T_{p} M$ exists.

3. THE COMPONENTS OF THE CURVATURE TENSOR

The Levi-Civita connection on a Riemannian manifold is denoted by ∇. For the Christoffel symbols $\Gamma_{i j}^{s}$ of ∇ it is well known that

$$
\begin{equation*}
2 \Gamma_{i k}^{h}=g^{h t}\left(\partial_{i} g_{t k}+\partial_{k} g_{t i}-\partial_{t} g_{i k}\right), \tag{3.1}
\end{equation*}
$$

where $g^{i j}$ are the components of the inverse matrix of $\left(g_{i j}\right)$.
The curvature tensor R of ∇ is defined by

$$
R(x, y) z=\nabla_{x} \nabla_{y} z-\nabla_{y} \nabla_{x} z-\nabla_{[x, y]} z
$$

and the local components of R are

$$
\begin{equation*}
R_{i j k}^{h}=\partial_{j} \Gamma_{i k}^{h}-\partial_{k} \Gamma_{i j}^{h}+\Gamma_{i k}^{t} \Gamma_{t j}^{h}-\Gamma_{i j}^{t} \Gamma_{t k}^{h} . \tag{3.2}
\end{equation*}
$$

The corresponding tensor R of type $(0,4)$ is determined as follows

$$
R(x, y, z, u)=g(R(x, y) z, u)
$$

For (M, g, q), we denote $D=(A-B)(A+2 B)$ and

$$
\begin{equation*}
A_{i}=\frac{\partial A}{\partial X^{i}}, \quad B_{i}=\frac{\partial B}{\partial X^{i}}, \tag{3.3}
\end{equation*}
$$

where A and B are the functions from (2.1).
The inverse matrix of g is

$$
\left(g^{i j}\right)=\frac{1}{D}\left(\begin{array}{ccc}
A+B & -B & -B \tag{3.4}\\
-B & A+B & -B \\
-B & -B & A+B
\end{array}\right)
$$

Then by direct calculations, having in mind (2.1), (3.1), (3.2), (3.3) and (3.4), we obtain
Theorem 3.1. The nonzero components of the curvature tensor R of type $(0,4)$ of the manifold (M, g, q) are

$$
\begin{aligned}
& \quad R_{1212}=\frac{1}{2}\left(2 B_{21}-A_{11}-A_{22}\right) \\
& \quad+\frac{A+B}{4 D}\left(2 A_{3} B_{2}-A_{3}^{2}+\left(B_{1}-B_{2}-B_{3}\right)\left(B_{1}+B_{2}-B_{3}\right)\right) \\
& \quad-\frac{2 B}{4 D}\left(\left(A_{1}-B_{2}\right)\left(B_{1}+B_{2}-B_{3}\right)-A_{1} A_{3}+A_{3} B_{2}\right), \\
& R_{1313}=\frac{1}{2}\left(2 B_{31}-A_{11}-A_{33}\right) \\
& +\frac{A+B}{4 D}\left(2 A_{2} B_{3}-A_{2}^{2}+\left(-B_{1}+B_{2}+B_{3}\right)\left(-B_{1}+B_{2}-B_{3}\right)\right) \\
& -\frac{2 B}{4 D}\left(\left(A_{1}-B_{3}\right)\left(B_{1}-B_{2}+B_{3}\right)-A_{1} A_{2}+A_{2} B_{3}\right), \\
& \quad R_{2323}=\frac{1}{2}\left(2 B_{23}-A_{22}-A_{33}\right) \\
& \quad+\frac{A+B}{4 D}\left(2 B_{3} A_{1}-A_{1}^{2}+\left(B_{1}-B_{2}+B_{3}\right)\left(B_{1}-B_{2}-B_{3}\right)\right) \\
& \quad-\frac{2 B}{4 D}\left(\left(A_{2}-B_{3}\right)\left(B_{2}-B_{1}+B_{3}\right)-A_{1} A_{2}+A_{1} B_{3}\right),
\end{aligned}
$$

$$
\begin{aligned}
& R_{1213}=\frac{1}{2}\left(B_{21}+B_{31}-B_{11}-A_{23}\right) \\
& \left.+\frac{A+B}{4 D}\left(A_{1}\left(B_{2}-B_{3}+B_{1}\right)+2 B_{3}\left(B_{3}-B_{2}-B_{1}\right)+A_{2} A_{3}\right)\right) \\
& -\frac{B}{4 D}\left(A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+2 A_{1}\left(A_{2}-B_{3}\right)-2 A_{2} B_{3}\right. \\
& \left.-2 A_{3}\left(B_{1}-B_{3}\right)+\left(B_{1}-B_{2}-B_{3}\right)\left(B_{1}+B_{2}-B_{3}\right)\right) \\
& R_{1223}=\frac{1}{2}\left(B_{22}-B_{12}-B_{23}+A_{13}\right) \\
& +\frac{A+B}{4 D}\left(A_{2}\left(B_{2}+B_{3}-B_{1}\right)-\left(2 B_{3}-A_{1}\right)\left(2 B_{2}-A_{3}\right)\right) \\
& -\frac{B}{4 D}\left(A_{2}^{2}-A_{1}^{2}+A_{3}^{2}+2 A_{1}\left(B_{2}+B_{3}\right)+2 A_{2}\left(B_{2}-B_{3}\right)\right. \\
& \left.+2 A_{3}\left(B_{3}-B_{1}\right)-4 B_{2} B_{3}+\left(B_{1}+B_{2}-B_{3}\right)\left(B_{1}-B_{2}-B_{3}\right)\right) \\
& R_{1323}=\frac{1}{2}\left(B_{23}-B_{33}+B_{13}-A_{12}\right) \\
& +\frac{A+B}{4 D}\left(\left(2 B_{2}-A_{1}\right)\left(2 B_{3}-A_{2}\right)-A_{3}\left(-B_{1}+B_{2}+B_{3}\right)\right. \\
& -\frac{B}{4 D}\left(A_{1}^{2}-A_{2}^{2}-A_{3}^{2}-2 A_{1}\left(B_{2}+B_{3}\right)+2 A_{2}\left(B_{1}-B_{2}\right)\right. \\
& \left.+2 A_{3}\left(B_{2}-B_{3}\right)+4 B_{2} B_{3}+\left(-B_{1}+B_{2}+B_{3}\right)\left(B_{1}-B_{2}+B_{3}\right)\right) .
\end{aligned}
$$

The rest of the nonzero components are obtained by the properties

$$
R_{i j k h}=R_{k h i j}, R_{i j k h}=-R_{j i k h}=-R_{i j h k}
$$

4. Some sectional curvatures

In [1], for (M, g, q) it is proved that $\nabla q=0$ implies

$$
\begin{equation*}
R(x, y, q z, q u)=R(x, y, z, u) \tag{4.1}
\end{equation*}
$$

Therefore it follows the identity

$$
\begin{equation*}
R(q x, q y, q z, q u)=R(x, y, z, u) \tag{4.2}
\end{equation*}
$$

which defines a more general class of manifolds (M, g, q) than the class with the condition $\nabla q=0$.

Let $\{x, y\}$ be a non-degenerate 2-plane spanned by vectors $x, y \in T_{p} M, p \in M$. Then its sectional curvature is

$$
\begin{equation*}
\mu(x, y)=\frac{R(x, y, x, y)}{g(x, x) g(y, y)-g^{2}(x, y)} . \tag{4.3}
\end{equation*}
$$

Proposition 4.1. Let (M, g, q) be a manifold with property (4.2) and a vector x induce a q-basis. Then

$$
\mu(x, q x)=\mu\left(q x, q^{2} x\right)=\mu\left(x, q^{2} x\right) .
$$

Proof. From (4.2) we get

$$
\begin{equation*}
R\left(q^{2} x, q^{2} y, q^{2} z, q^{2} u\right)=R(q x, q y, q z, q u)=R(x, y, z, u) \tag{4.4}
\end{equation*}
$$

In (4.4) we substitute $q x$ for y, x for z and $q x$ for u and we find

$$
\begin{equation*}
R\left(q^{2} x, x, q^{2} x, x\right)=R\left(q x, q^{2} x, q x, q^{2} x\right)=R(x, q x, x, q x) \tag{4.5}
\end{equation*}
$$

Then, from (2.4) and (4.3) it follows (4.3).
Let x induce a q-basis of $T_{p} M$ and $\sigma=\{x, q x\}$ be a 2 -plane. It is easy to see that if $y \in \sigma$ and $y \neq x$, then $q y \notin \sigma$. Consequently, σ has only two q-bases: $\{x, q x\}$ and $\{-x,-q x\}$. That's why the sectional curvature $\mu(x, q x)$ depends only on $\varphi=\angle(x, q x)$. So, we denote $\mu(x, q x)=\mu(\varphi)$.

Theorem 4.1. Let (M, g, q) be a manifold with property (4.2). If a vector u induces a q-basis, then

$$
\begin{equation*}
\mu(\varphi)=\frac{1-2 \cos \varphi}{1+\cos \varphi} \mu\left(\frac{\pi}{2}\right)+\frac{3 \cos \varphi}{1+\cos \varphi} \mu\left(\frac{\pi}{3}\right) \tag{4.6}
\end{equation*}
$$

where $\varphi=\angle(u, q u)$.
Proof. In (4.4) we substitute $q x$ for $y, q^{2} x$ for z and x for u and we get

$$
\begin{equation*}
R\left(q^{2} x, x, q x, q^{2} x\right)=R\left(q x, q^{2} x, x, q x\right)=R\left(x, q x, q^{2} x, x\right) \tag{4.7}
\end{equation*}
$$

Let a vector x induce an orthonormal q-basis. If $u=\alpha x+\beta q x+\gamma q^{2} x$, where $\alpha, \beta, \gamma \in \mathbb{R}$, then $q u=\gamma x+\alpha q x+\beta q^{2} x$. Due to the linear properties of the curvature tensor R, we obtain

$$
\begin{aligned}
R(u, q u, u, q u) & =\left(\alpha^{2}-\beta \gamma\right)^{2} R(x, q x, x, q x) \\
& +\left(\gamma^{2}-\alpha \beta\right)^{2} R\left(x, q^{2} x, x, q^{2} x\right) \\
& +\left(\beta^{2}-\alpha \gamma\right)^{2} R\left(q x, q^{2} x, q x, q^{2} x\right) \\
& +2\left(\alpha^{2}-\beta \gamma\right)\left(\gamma^{2}-\alpha \beta\right) R\left(x, q x, q^{2} x, x\right) \\
& +2\left(\gamma^{2}-\alpha \beta\right)\left(\beta^{2}-\alpha \gamma\right) R\left(q^{2} x, x, q x, q^{2} x\right) \\
& +2\left(\alpha^{2}-\beta \gamma\right)\left(\beta^{2}-\alpha \gamma\right) R\left(x, q x, q x, q^{2} x\right) .
\end{aligned}
$$

Having in mind (4.5) and (4.7) we find

$$
\begin{aligned}
& R(u, q u, u, q u)=\left(\left(\alpha^{2}-\beta \gamma\right)^{2}\right. \\
& \left.+\left(\gamma^{2}-\alpha \beta\right)^{2}+\left(\beta^{2}-\alpha \gamma\right)^{2}\right) R(x, q x, x, q x) \\
& +2\left(\left(\alpha^{2}-\beta \gamma\right)\left(\gamma^{2}-\alpha \beta\right)+\left(\gamma^{2}-\alpha \beta\right)\left(\beta^{2}-\alpha \gamma\right)\right. \\
& \left.+\left(\alpha^{2}-\beta \gamma\right)\left(\beta^{2}-\alpha \gamma\right)\right) R\left(x, q x, q^{2} x, x\right)
\end{aligned}
$$

Since $\left\{x, q x, q^{2} x\right\}$ is an orthonormal q-basis, we have

$$
g(u, u)=g(q u, q u)=\alpha^{2}+\beta^{2}+\gamma^{2}, \quad g(u, q u)=\alpha \beta+\beta \gamma+\gamma \alpha .
$$

We suppose that $g(u, u)=1$. From (2.4) and (4.3) we get

$$
\begin{equation*}
\mu(\varphi)=\frac{R(u, q u, u, q u)}{1-\cos ^{2} \varphi} \tag{4.9}
\end{equation*}
$$

and

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=1, \quad \alpha \beta+\beta \gamma+\gamma \alpha=\cos \varphi
$$

We express α, β, γ by $\cos \varphi$ as follows:

$$
\begin{aligned}
(\cos \varphi)^{2}-\cos \varphi & =\left(\alpha^{2}-\beta \gamma\right)\left(\gamma^{2}-\alpha \beta\right)+\left(\gamma^{2}-\alpha \beta\right)\left(\beta^{2}-\alpha \gamma\right) \\
& +\left(\alpha^{2}-\beta \gamma\right)\left(\beta^{2}-\alpha \gamma\right) \\
1-(\cos \varphi)^{2} & =\left(\alpha^{2}-\beta \gamma\right)^{2}+\left(\gamma^{2}-\alpha \beta\right)^{2}+\left(\beta^{2}-\alpha \gamma\right)^{2} .
\end{aligned}
$$

Then, from (4.8) and (4.9), we obtain

$$
\begin{equation*}
\mu(\varphi)=\mu\left(\frac{\pi}{2}\right)+\frac{2 \cos \varphi}{1+\cos \varphi} R\left(x, q x, x, q^{2} x\right) \tag{4.10}
\end{equation*}
$$

In (4.10) we substitute $\frac{\pi}{3}$ for φ and we find

$$
R\left(x, q x, x, q^{2} x\right)=\frac{3}{2}\left(\mu\left(\frac{\pi}{3}\right)-\mu\left(\frac{\pi}{2}\right)\right)
$$

The last result and (4.10) imply (4.6).
Corollary 4.1. Let (M, g, q) be a manifold with property (4.1). If a vector u induces a q-basis, then

$$
\begin{equation*}
\mu(\varphi)=\frac{1-\cos \varphi}{1+\cos \varphi} \mu\left(\frac{\pi}{2}\right) \tag{4.11}
\end{equation*}
$$

where $\varphi=\angle(u, q u)$.
Proof. Since (4.1) is valid, we find

$$
R(x, y, z, u)=R(x, y, q z, q u)=R\left(x, y, q^{2} z, q^{2} u\right)
$$

In the latter equalities we substitute $q x$ for y, x for z and $q x$ for u and we get

$$
\begin{equation*}
R\left(x, q x, x, q^{2} x\right)=-R(x, q x, x, q x) \tag{4.12}
\end{equation*}
$$

If we suppose that $\left\{x, q x, q^{2} x\right\}$ is an orthonormal q-basis, then from (4.10) and (4.12) it follows (4.11).

5. AN EXAMPLE OF (M, g, q)

In [1] it is proved that, the structure q is parallel with respect to the Levi-Civita connection ∇ of g on a manifold (M, g, q) if and only if the gradients of A and B satisfy the following equality:

$$
\operatorname{grad} A=\operatorname{grad} B\left(\begin{array}{ccc}
-1 & 1 & 1 \tag{5.1}\\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right)
$$

In this section we discuss an example of a manifold (M, g, q) which satisfies (4.2), but doesn't satisfy (5.1).

Theorem 5.1. The property (4.2) of the manifold (M, g, q) is equivalent to the conditions

$$
\begin{equation*}
R_{1212}=R_{1313}=R_{2323}, \quad R_{1213}=R_{1323}=-R_{1223} \tag{5.2}
\end{equation*}
$$

where $R_{i j k h}$ are the local components of the curvature tensor R of type (0,4).

Proof. The local form of (4.2) is

$$
\begin{equation*}
R_{t s l m} q_{i}^{t} q_{j}^{s} q_{k}^{l} q_{h}^{m}=R_{i j k h} \tag{5.3}
\end{equation*}
$$

From (2.1) and (5.3) we find

$$
\begin{array}{ll}
R_{1212}=R_{2323}, & R_{1313}=R_{2121}, \\
R_{2321}=R_{1213}, & R_{2331}=R_{1223}, \tag{5.4}\\
R_{2131}=R_{1323}, & R_{3131}=R_{2323},
\end{array}
$$

which implies (5.2).
Vice versa, from (5.2) it follows (5.4). Having in mind (2.1) we get (5.3).
Let (M, g, q) be a manifold with

$$
\begin{equation*}
A=2 X^{1}, B=2 X^{1}+X^{2}+X^{3} \tag{5.5}
\end{equation*}
$$

where

$$
2 X^{1}+X^{2}+X^{3}>0, \quad X^{2}+X^{3}<0
$$

Obviously, the condition (2.2) is satisfied. Due to (2.1), (3.4), (5.5) and Theorem 3.1 we obtain

$$
\begin{align*}
& R_{1212}=R_{1313}=R_{2323}=-\frac{B}{(A-B)(A+2 B)} \tag{5.6}\\
& R_{1213}=R_{1323}=R_{1223}=0
\end{align*}
$$

We check directly that the conditions (5.2) are valid, but the conditions (5.1) for the functions A and B are not valid.

Consequently, we obtain the following
Theorem 5.2. The manifold (M, g, q) with (5.5) satisfies the curvature identity (4.2). Furthermore, the structure q is not parallel with respect to the Levi-Civita connection ∇ of g.

The Ricci tensor ρ and the scalar curvature τ are given by the well-known formulas:

$$
\rho(y, z)=g^{i j} R\left(e_{i}, y, z, e_{j}\right), \tau=g^{i j} \rho\left(e_{i}, e_{j}\right) .
$$

We obtain the components of ρ and the value of τ :

$$
\begin{gather*}
\rho_{12}=\rho_{13}=\rho_{23}=\frac{B^{2}}{(A-B)^{2}(A+2 B)^{2}}, \tag{5.7}\\
\rho_{11}=\rho_{22}=\rho_{33}=\frac{2 B(A+B)}{(A-B)^{2}(A+2 B)^{2}}, \\
\tau=\frac{6 A B}{(A-B)^{3}(A+2 B)^{2}} . \tag{5.8}
\end{gather*}
$$

Therefore, we arrive at the following
Proposition 5.1. For the manifold (M, g, q) with (5.5), the following assertions are valid:
(i) The components of the curvature tensor R are (5.6), i.e. M is not a flat manifold;
(ii) The components of the Ricci tensor ρ are (5.7);
(iii) The scalar curvature τ is (5.8).

Acknowledgment

This work is partially supported by project FP17-FMI-008 of the Scientific Research Fund, University of Plovdiv Paisii Hilendarski, Bulgaria.

References

[1] G. Dzhelepov, I. Dokuzova, D. Razpopov: On a three-dimensional Riemannian manifold with an additional structure, Plovdiv. Univ. Paisii Khilendarski Nauchn. Trud. Mat., 38(3) (2011), 17-27.
[2] A. Gray, L. VANHECKE: Almost Hermitian manifolds with constant holomorphic sectional curvature, Appl. Math., 104 (1979), 170-179.
[3] A. KAVEH, H. RAHAMI: Block circulant matrices and application in free vibration analysis of cyclically repetitive structures, Acta Mech., 217 (2011), 51-62.
[4] R. M. Roth, A. Lempel: Application of circulant matrices to the construction and decoding of linear codes, IEEE Trans. Inform. Theory, 36 (5) (1990), 1157-1163.
[5] T. SATO: Examples of Hermitian manifolds with pointwise constant holomorphic sectional curvature, Mediterr. J. Math., 10(3) (2013), 1539-1549.
[6] G. Stanilov: Even dimensional circulate geometry, Results Math., 59(3-4) (2011), 319-326.
[7] M. Staikova, K. Gribachev, D. Mekerov: Riemannian P-manifolds of constant sectional curvatures, Serdica Math. J., 17(4) (1991), 212-219.
[8] D. STEVANOVIĆ, I. STANKOVIĆ: Remarks on hyperenergetic circulant graphs, Linear Algebra Appl., 400 (2005), 345-348.

Department of Algebra and Geometry
University of Plovdiv Paisii Hilendarski 236 Bulgaria Blvd, 4027 Plovdiv, Bulgaria
Email address: dokuzova@uni-plovdiv.bg
Department of Mathematics and Physics
University of Agriculture
12 Mendeleev Blvd, 4000 Plovdiv, Bulgaria
Email address: razpopov@au-plovdiv.bg
Department of Mathematics and Physics
University of Agriculture
12 Mendeleev Blvd, 4000 Plovdiv, Bulgaria
Email address: dzhelepov@au-plovdiv.bg

[^0]: ${ }^{1}$ corresponding author
 2010 Mathematics Subject Classification. 53C05, 53B20, 15B05.
 Key words and phrases. Riemannian manifold, Riemannian metric, circulant matrix, curvature properties.

