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Abstract. We study hyper-spheres, spheres and circles, with respect to an indefinite
metric, in a tangent space on a 4-dimensional differentiable manifold. The manifold is
equipped with a positive definite metric and an additional tensor structure of type (1, 1).
The fourth power of the additional structure is minus the identity and its components
form a skew-circulant matrix in some local coordinate system. The both structures are
compatible and they determine an associated indefinite metric on the manifold.
Keywords: indefinite metric, tangent space, tensor structure, manifold.

1. Introduction

There are various applications of the correspondences between circles and el-
lipses (circles and hyperbolas, circles and parabolas), as well as between spheres
and other quadratic surfaces, for example in geometry, mechanics, astrophysics.
Circles and spheres could be determined with respect to an indefinite metric and
then their images could be obtained in Euclidean space. In this vein, we consider
a circle determined with respect to an associated indefinite metric on a Rieman-
nian manifold and the corresponding quadratic curve in Euclidean space. Also, we
study a sphere (a hyper-sphere) determined with respect to an associated indefinite
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metric on a Riemannian manifold and the corresponding quadratic surface (hyper-
surface) in Euclidean space. We will mention some papers which concern models of
hyper-spheres, spheres and circles with respect to some indefinite metrics and their
relations with the corresponding quadratic geometrical objects ([1, 5, 11, 12, 13]).

The Hermitian manifolds form a class of manifolds with an integrable almost
complex structure J ([9]). One subclass consists of the so-called locally conformal
Kahler manifolds, determined by a special property of the covariant derivative of J.
Some of the recent investigations of locally conformal K&hler manifolds are made
in [2, 3, 10, 14, 15, 16].

We consider a 4-dimensional Riemannian manifold M, endowed with a positive
definite metric g and an endomorphism S in a tangent space T, M at an arbitrary
point p on M. The fourth power of S is minus the identity and the components of .S
form a skew-circulant matrix with respect to some basis of T, M. It is supposed that
S is compatible with g. Such a manifold (M, g, S) is defined in [6]. In [7] it is proved
that (M, g,J), where J = S2, is a locally conformal Kihler manifold. We consider
an associated metric g on (M, g,.5), defined by both structures g and S. The metric
g is necessarily indefinite and it determines space-like vectors, isotropic vectors and
time-like vectors in every T, M. We study hyper-spheres in T, M, spheres and circles
in some special subspaces of T}, M with respect to g.

The paper is organized as follows. In Sect. 2., we recall some necessary facts,
definitions and statements about the manifold (M, g, S) obtained in [6] and [7]. In
Sect. 3., we find the equation of a central hyper-sphere in T, M with respect to the
associated metric g. In Sect. 4., we consider spheres with respect to g in special
3-dimensional subspaces of 1), M and obtain their equations. In Sect. 5., we consider
some special 2-planes in T, M and we get the equations of circles with respect to §
in these 2-planes. We interpret all equations of the curves and surfaces, studied in
Sect. 3., Sect. 4. and Sect. 5., in terms of g.

2. Preliminaries

The skew-circulant matrices are Toeplitz matrices, which are well-studied in [4]
and [8]. In our work we consider a tensor structure on a 4-dimensional differentiable
manifold, whose component matrix is skew-circulant. Therefore we recall the follow-
ing definition. A real skew-circulant matriz with the first row (ay,az,as,as) € R*
is a square matrix of the form

ay a2 asg Qg
—a4 a1 az  as
—a3 —a4 a1 Q2
—az —a3 —a4 Qai

We now introduce a manifold (M, g,S) in detail. Let M be a 4-dimensional
Riemannian manifold equipped with a tensor S of type (1,1). Let the components
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of S form the following skew-circulant matrix in a local coordinate system:

0 1 00
0 010
5= 0 0 0 1
-1 0 0 O

Then S has the property
(2.1) 5% = —id.

We assume that g is a positive definite metric on M, which satisfies the equality
(2.2) g(Su, Sv) = g(u,v), wu,v€XM.

Such a manifold (M, g, S) is introduced in [6]. The manifold (M, g, J), where J =
S2, is a locally conformal Kihler manifold (Theorem 5.3 in [7]).

The associated metric g on (M, g,S), defined by
(2.3) 9(u,v) = g(u, Sv) + g(Su,v),

is necessarily indefinite. Consequently, having in mind (2.3), for an arbitrary vector
v it is valid:
(2.4) g(v,v) = 2¢g(v, Sv) = a, a€R.

According to the physical terminology we give the following

Definition 2.1. Let § be the associated metric on (M, g, S). If a vector u satisfies
g(u,u) > 0 (resp. g(u,u) < 0), then u is a space-like (resp. a time-like) vector. If
u is nonzero and satisfies §(u,u) = 0, then w is an isotropic vector.

It is well-known that the norm of every vector u of the tangent space T, M and
the cosine of the angle between two nonzero vectors u and v of T, M are given by

(2.5) [ull = Vg (u,w),

cos Z(u,v) = g(u, v)
(26) <0 0) = ol

A basis of type {u, Su, S?u, S3u} of T, M is called an S-basis. In this case we
say that the vector u induces an S-basis of T,M. In [6] the following assertions are
proved. If a vector u induces an S-basis, then

(i) the angles between the basis vectors are

Z(u, Su) = £(Su, S?u) = £(S%u, S3u) = 7 — £(S3u,u),
(2.7) Z(u, S?u) = £(Su, S%u) = 3.

(ii) the angle ¢, determined by

(2.8) ¢ = ZL(u, Su),
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satisfies inequalities

3
(2.9) Tep<™
Next we have

Theorem 2.1. Let § be the associated metric on (M,g,S) and let the vector u
induce an S-basis. The following propositions hold true.

(i) Vector u is space-like if and only if ¢ € (%7 %)
(ii) Vector u is isotropic if and only if ¢ = 7.

(iii) Vector u is time-like if and only if ¢ € (%, 3F).

Proof. Using (2.4), (2.5), (2.6) and (2.8) we get §(u,u) = 2||ul|? cos p. Having in
mind Definition 2.1 and inequalities (2.9) the proof follows. O

Evidently, due to (2.1), (2.2) and (2.3), we state

Corollary 2.1. If u is a space-like (isotropic or time-like) vector, then Su, S*u
and S3u are space-like (isotropic or time-like) vectors, respectively.

In the next sections we get equations of hyper-spheres, spheres and circles with
respect to § in some subspaces of T, M on (M, g, .S). Obviously, the obtained curves
and surfaces do not depend on the choice of the basis. We use orthonormal bases
with respect to the metric g on (M, g, S) to find their equations easier. In Section 3.,
we use an orthonormal S-basis of T, M. The existence of such bases is proved in
[6]. In Section 4. and Section 5., we construct orthonormal bases of 3-dimensional
subspaces of T,M and of 2-dimensional subspaces of T, M with the help of an
arbitrary S-basis.

3. Hyper-spheres with respect to the associated metric

Let {u,Su, S?u, S3u} be an orthonormal S-basis of T,M with respect to the
metric g on (M, g, S). If py.: is a coordinate system such that the vectors u, Su, S*u
and S3u are on the axes p,, py, p» and p:, respectively, then p,,.¢ is orthonormal.
The radius vector v of an arbitrary point (z,y,z,t) of T,M is expressed by the
equality
(3.1) v = zu+ySu + 25%u + tS%u.

A hyper-sphere s centered at the origin p, with respect to g on (M,g,5), is
defined by (2.4). We apply (3.1) into (2.4), and bearing in mind that ps,.; is an
orthonormal coordinate system and also equalities (2.1) and (2.2), we obtain the
equation of s as follows:

(3.2) 2(zy — xt + yz + 2t) = a.



Spheres and Circles With Respect to an Indefinite Metric 687

Now, we transform the coordinate system pgy.; into pyrys.re by

(33) T = %(q’./ - yl + Z/ - t/)v Y= g(iy/ + t/)

p= Ly + 2 ), t= L=+ 7).

We substitute (3.3) into (3.2) and it takes the form

a

Nk

Evidently, in terms of g, we have that (3.4) is an equation of a 3-dimensional
hyperboloid.

(3.4) I/Q + y/2 o 2/2 o t/2 —

Therefore, we state the following

Theorem 3.1. Let § be the associated metric on (M,g,S) and let the vector u
induce an orthonormal S-basis of T,M. If pyy.i i a coordinate system such that
u € py, Su € py, S*u € p,, S*u € py, then the hyper-sphere (2.4) has the equation
(3.4) with respect to the coordinate system pgry .1, obtained by the transformation

(33) Of pmyzt .

Corollary 3.1. Let s be the 3-dimensional hyperboloid (3.4). The following propo-
sitions are valid.

i) Every point on s, where a <0, has a time-like radius vector;
ii) Every point on s, where a = 0, has an isotropic radius vector;

i1i) Bvery point on s, where a > 0, has a space-like radius vector.
Proof. According to Definition 2.1 and due to (2.4) the statement holds. [

Corollary 3.2. Let s be the 3-dimensional hyperboloid (3.4). Then the intersec-
tions 01, 02, 03 and o4 between s and the coordinate planes of pyry: .1, TEsSpectively,
are the following surfaces:

i) o1, o2 are hyperboloids of two sheets and o3, o4 are hyperboloids of one sheet,
i case a > 0y

i1) o1, o2 are hyperboloids of one sheet and o3, o4 are hyperboloids of two sheets,
i case a < 0y

i) 01, 09, o3 and o4 are circular cones, in case a = 0.

Proof. Using (3.4) and the equation of the coordinate plane 2’ = 0 we get the
surface o1 : V2(y'? — 22 —t'?) = a, 2’ = 0. Consequently, if a > 0, then o, is a
hyperboloid of two sheet, if a < 0, then o7 is a hyperboloid of one sheet and if a = 0,
then o7 is a circular cone. Similarly, we consider the other cases of intersections o,
oz and 4. O
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Theorem 3.2. Let § be the associated metric on (M,g,S) and let the vector u
induce an orthonormal S-basis of T, M. If pyy.: s a coordinate system such that
U € py, Su € py, S?u € p, and S3u € p;, then u, Su, S*u and S3u are isotropic
vectors and their heads lie at the surface with equations

1 1
3.5 2 2 2 2
N t -
( ) T Yy = 2’ z 2’

where Paryore 1S the coordinate system obtained by the transformation (3.3) of Pryst.

Proof. Bearing in mind (2.3) and Definition 2.1 we get that u, Su, S?u and S?u are
isotropic vectors with respect to g. Therefore, their heads are on the hyper-cone
(3.4) in case a = 0. On the other hand, these heads lie at the unit hyper-sphere
with respect to g. This hyper-sphere with respect to pyry ./ has the equation

(36) I/2 4 y/2 4 Z/2 +t/2 - 1.

The system of (3.4), where a = 0, and (3.6) gives the intersection of a hyper-
cone with a hyper-sphere. This intersection, with respect to the coordinate system
Pary 2, is represented by the equivalent system (3.5). [

4. Spheres in a 3-dimensional subspace of T,,\M

Let the unit vector u induce an S-basis of T, M. Hence v induces four different
pyramids spanned by the following triples {u, Su, S?u}, {Su, S?u, S?u}, {u, Su, S3u}
and {u, S?u, S3u}. According to (2.2) and (2.7), the first and the second pyramid
constructed on these basis vectors are equal, as well as the third and the fourth
pyramid are also equal. Thus we will investigate only the subspaces with bases
defined by the first and the third pyramid.

4.1. A sphere in the 3-dimensional subspace of 7T,M, spanned by
vectors u, Su and S?u

Lemma 4.1. Let a; be a subspace of T,M with a basis {u, Su, S*u}. The system

of vectors {e1, ea,e3}, determined by the equalities

— Su — 52
(1) — 62:( cos p)u + Su — (cos ) u7 es = S0,

V1 —2cos? ¢

where o = Z(u, Su), form an orthonormal basis of a;.

Proof. Using (2.2), (2.7) and (4.1) we obtain g(e1,e1) = g(ez,e3) = g(es,e3) =1
and g(e1,e2) = g(eg,e3) = gler,e3) =0. O

The coordinate system p,,. such that e; € p,, e2 € py and ez € p, is orthonor-
mal.

A sphere s in a; centered at the origin p, with respect to g on (M,g,S5), is
defined by (2.4). In the next statement we get the equation of s; with respect to
the orthonormal coordinate system pg,..
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Theorem 4.1. Let § be the associated metric on (M,g,S) and let oy be a 3-
dimensional subspace of T,M with a basis {u, Su,S?u}. If e1, ez and e3 are deter-
mined by (4.1) and Pzyz 18 a coordinate system such that ey € py, €2 € py, €3 € P,
then the equation of the sphere s in aq is given by

(4.2) 2(cos @) (2% — y* + 22) + 2y/1 — 2cos2 p(zy + y2) = a.

Proof. The radius vector v of an arbitrary point (z,y,z) on aj is expressed by
v = xe; + yes + zes. We apply the latter equality into (2.4) and we find

gler,e1)a” + Glea, e2)y® + Gles, e3)2” + 2 (eq, ea)ay
(4.3) +2g(e1,e3)xz + 2g(eq, e3)yz = a.

Using (2.2), (2.3), (2.7) and (4.1), we obtain

gler,e1) =2cosp, gles,e3) =2cosp, g(ea,e2) = —2cosp,
gler,e2) = glez,e3) = /1 —2cos? ¢, g(er,e3) =0.

Substituting the latter equalities into (4.3) we get (4.2). O

Now, we transform the coordinate system pg,. into pg/y/.» by

1 1
r=—2'+ My +mz, y=Xy +uz, z=-——2"+MNy + 7,

V2 V2

where

1 2

(4.4) /\125\/14—\/5008(,0, Agz%\/l—\@cosw,
1 2

(4.5) m:i\/l—\/icosw, Mgz—g\/l+\f2€0$(p.

Therefore the equation (4.2) takes the form
(4.6) 2cos pz'? +V2y? — V22 = a.

Corollary 4.1. Let s1 be the surface, determined by (4.6) in case a = 0. The
following statements hold true.

i) If o # %5, then sy is a cone;

i) If p = 5, then s1 separates into two planes 2’ = %y’

Corollary 4.2. Let s1 be the surface, determined by (4.6) in case a > 0. The
following statements hold true.

i) If p € (§,5), then s1 is a hyperboloid of one sheets;
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i) If € (5, ?ﬂf), then s1 is a hyperboloid of two sheet;

iii) If o = 5, then s1 is a hyperbolic cylinder.

Corollary 4.3. Let s1 be the surface, determined by (4.6) in case a < 0. The
following statements hold true.

i) If o € (§,5), then s1 is a hyperboloid of two sheets;
i) If ¢ € (5, ?ﬂf), then s1 is a hyperboloid of one sheet;
iii) If o = 5, then s1 is a hyperbolic cylinder.
4.2. A sphere in the 3-dimensional subspace of T,M, spanned by
vectors u, Su and S3u

Lemma 4.2. Let ay be a subspace of T,M with a basis {u, Su, S3u}. The system
of vectors {e1, e, e3}, determined by the equalities

u — (cos ) Su + (cos ) S*u
v1—2cos2¢p ’

where ¢ = Z(u, Su), is an orthonormal basis of as.

(4.7) e1 = Su, ey = es = S3u,

Proof. Using (2.1), (2.2), (2.7) and (4.7) we obtain g(e1,e2) = g(es,e3) = 0,
gler,e3) =0 and g(er, e1) = g(ea, €2) = gles,e3) = 1. O

The coordinate system p,,. such that the vectors e;, e; and ez are on the axes
Dz, Py and p,, respectively, is orthonormal.

A sphere sy in ay centered at the origin p, with respect to g on (M,g,S5), is
defined by (2.4). In the next statement we get the equation of sy with respect to
the orthonormal coordinate system pg,,..

Theorem 4.2. Let § be the associated metric on (M,g,S) and let ay be a 3-
dimensional subspace of T,M with a basis {u, Su, S*u}. If e1, ez and e3 are deter-
mined by (4.7) and pyy. is @ coordinate system such that e1 € pg, €2 € py, €3 € ps,
then the equation of the sphere sy in awg is given by

(4.8) 2(cos o) (2% — y? + 2%) + 2y/1 — 2cos2 p(zy — yz) = a.

Proof. The radius vector v of an arbitrary point (z,y,z) on as is expressed by
v = xey + yes + zez. Then (2.4) takes the form

gle1,e1)z” + glea, e2)y” + gles, e3)z” + 2g(e1, e2)xy
(4.9) +2g(e1,e3)xz + 2g(eq, e3)yz = a.
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By (2.2), (2.3), (2.7) and (4.7) we obtain

9(61761) = 2cos 2 §(63763) = 2005907 9(62762) = 72COSS07

g(elaGQ): \% 1_2C082§07 §(61,€3):07 §(62363):_\/1_2C08290'

Substituting the latter equalities into (4.9) we get (4.8). O

After transformation of the coordinate system pg,. into pgry.» by

1 1
r=—2 + My + s, y=Xy +uz, z=-—2 — My — 2

V2 V2
with (4.4) and (4.5), the equation (4.8) takes the form
2cos pa’? +V2y'? — V227 = a.

The above equation is the same as (4.6).

5. Circles in a special 2-planes of T, M

Let the unit vector u induce an S-basis of T, M. Now we study circles in three dif-
ferent subspaces 31, 32 and 3 spanned by 2-planes {u, S?u}, {u, Su} and {u, S3u},
respectively.

5.1. Circles in the 2-plane 3,
Due to (2.7) it is true that both vectors u and S?u form an orthonormal basis of

B1. We construct a coordinate system p,, on S, such that u is on the axis p, and
52y is on the axis py. Therefore p,, is an orthonormal coordinate system of ;.

Lemma 5.1. The system {u, S?u} satisfies the following equalities:
(5.1) G(u,u) = §(S%u, S?u) = 2cosp, §(u, S*u) = 0.
Proof. From (2.2), (2.3), (2.7) we get (5.1) by direct calculations. [

A circle ky in 8 centered at the origin p, with respect to g on (M, g,.S), is defined
by (2.4). Now we obtain the equation of k; with respect to py,.

Theorem 5.1. Let § be the associated metric on (M, g,S) and let 51 be a 2-plane
in T,M with a basis {u,S?u}. If Dzy 18 a coordinate system such that u € p,,
S%u € py, then the equation of the circle ki in 31 is given by

(5.2) 2cos px? +2cospy® =a, ¢ # g
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Proof. The radius vector v of an arbitrary point on (; is expressed by

(5.3) v = zu + yS*u,

which implies S?v = —yu + xS%u. Then from (2.4), (5.1) and (5.3) it follows
(5.2). O

Corollary 5.1. Let ky be the curve determined by (5.2). Then k1 is a circle in
case when a > 0 and ¢ € (%,g), or in case when a < 0 and ¢ € (g,%") The
curve ki degenerates into the point p in case a = 0.

We note that a 2-plane ¢ = {u, Ju}, where 6 = J¢, is known as J-invariant section
of T,M on an almost Hermitian manifold (M, g, J). Therefore, the 2-plane 51 =
{u, S?u} is a J-invariant section of T, M on the manifold (M, g, J), J = S2.

5.2. Circles in the 2-plane 3,

Lemma 5.2. Let 53 be the 2-plane spanned by unit vectors u and Su. The system
of vectors {e1,ea}, determined by the equalities

1 1
5.4 = ————(u+ Su), = —————=(—u+ Su),
(5:4) “ 2(1 4 cos p) (u+Su), e 2(1 — cos p) (Fut5u)

where ¢ = Z(u, Su), is an orthonormal basis of [Bs.

Proof. Using (2.7) and (5.4), we calculate g(ej,ez) = 0 and g(eq,e1) = g(ea, e2) =
1. O

We construct a coordinate system p,, on 33, such that e; is on the axis p, and ez
is on the axis py, i.e.pyy is orthonormal.

Lemma 5.3. The system {e1, ea} satisfies the following equalities:

2cosp+1
1+cosep’

2cosp —1

(5.5) gler,e1) = glez, e2) = g(er,eaz) = 0.

1—cosyp’
Proof. Using (2.2), (2.3) and (2.7) we get (5.5) by direct calculations. O

A circle ko in 33 centered at the origin p, with respect to § on (M, g, S), is defined
by (2.4). Further we obtain the equation of kg with respect to py,.

Theorem 5.2. Let § be the associated metric on (M,g,S) and let B2 = {u, Su}

be a 2-plane in T, M with an orthonormal basis (5.4). If pgy is a coordinate system

such that eq € py, ea € py, then the equation of the circle ky in By is given by
2cosp+1 5  2cosp—1 ,

5.6 =
(5:6) 1+cos<px + 1fcoscpy “
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Proof. The radius vector v of an arbitrary point on 32 is v = ze; + yes. Using the
latter equality, from (2.4) we get

(v, v) = gler, e1)a? +2g(er, e2)xy + glez, e2)y” = a.
Applying (5.5) into the above equation we find (5.6). O

According to the parameters a and ¢ the equation (5.6) describes different
quadratic curves. All possible values of these parameters and the corresponding
types of the curve (5.6) are studied in the Table 5.1.

5.3. Circles in the 2-plane (3
Lemma 5.4. Let B3 be the 2-plane spanned by unit vectors v and S3u. The system
of vectors {e1, ea}, determined by the equalities
1 1
(5.7) 1= —(u+S%), eg=——(—u+S%u),
2(1 — cosp) 2(1 + cosp)
where p = Z(u, Su), is an orthonormal basis of Bs3.
Proof. Using (2.7) and (5.7), we calculate g(e1,ez) = 0 and g(e1,e1) = g(ez,e2) =
1. O

We construct a coordinate system p,, on 33, such that e; € p, and ez € py, i.e.pzy
is orthonormal.

Lemma 5.5. The system {e1, ex} satisfies the following equalities:
2cosp +1
1+cosyp’

Proof. Using (2.1), (2.2), (2.3) and (2.7) we get (5.8) by direct calculations. [

2cosp —1

(5.8) gler,er) = , Gleg,ez) = g(er,es) = 0.

1 —cosp

A circle k3 in f3 centered at the origin p, with respect to § on (M, g,.S), is defined
by (2.4). In the next statement we obtain the equation of k3 with respect to pyy.

Theorem 5.3. Let § be the associated metric on (M, g,S) and let B3 = {u, S3u}
be a 2-plane in T, M with an orthonormal basis (5.7). If pgy is a coordinate system
such that ey € ps, e2 € py, then the equation of a circle k3 in 33 is given by
2cosp—1 5  2cosp+1 ,

x =a
1—cose 1+ cosy

(5.9)

Proof. The radius vector v of an arbitrary point on 3 is v = xe; + yes. Then (2.4)
imply
(5.10) g(v,0) = gler, e1)a® + 25 (e, e2)zy + Glez, e2)y” = a.

We apply (5.8) into (5.10) and we find (5.9). O

The equation (5.9) determines curves which are the same as the obtained ones by
(5.6). They are described in the Table 5.1.
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Table 5.1: Curves ko and k3
%2 a kQ, ]€3

(5 %) a >0 | an ellipse
a =0 | the point p
a < 0 | the empty set
3 a >0 | two lines x = :I:@

a =0 | the line x=0

a < 0 | the empty set

(%, %”) a >0 | a hyperbola

a =10 | two lines y = *cx, c is a constant
a < 0 | a hyperbola
= a > 0 | the empty set
a =20 | the line y=0
a <0 | two lines y =
(Z,28) | a> 0 | the empty set
a =0 | the point p

a < 0 | an ellipse

V=3
Y5 =
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