SPHERES AND CIRCLES WITH RESPECT TO AN INDEFINITE METRIC ON A RIEMANNIAN MANIFOLD WITH A SKEW-CIRCULANT STRUCTURE

Georgi Dzhelepov ${ }^{1}$, Iva Dokuzova ${ }^{2}$ and Dimitar Razpopov ${ }^{1}$
${ }^{1}$ Faculty of Economics, Department of Mathematics and Informatics Agricultural University of Plovdiv, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria
${ }^{2}$ Faculty of Mathematics and Informatics, Department of Algebra and Geometry
University of Plovdiv Paisii Hilendarski, 24 Tzar Asen, 4000 Plovdiv, Bulgaria

Abstract

We study hyper-spheres, spheres and circles, with respect to an indefinite metric, in a tangent space on a 4-dimensional differentiable manifold. The manifold is equipped with a positive definite metric and an additional tensor structure of type (1,1). The fourth power of the additional structure is minus the identity and its components form a skew-circulant matrix in some local coordinate system. The both structures are compatible and they determine an associated indefinite metric on the manifold.

Keywords: indefinite metric, tangent space, tensor structure, manifold.

1. Introduction

There are various applications of the correspondences between circles and ellipses (circles and hyperbolas, circles and parabolas), as well as between spheres and other quadratic surfaces, for example in geometry, mechanics, astrophysics. Circles and spheres could be determined with respect to an indefinite metric and then their images could be obtained in Euclidean space. In this vein, we consider a circle determined with respect to an associated indefinite metric on a Riemannian manifold and the corresponding quadratic curve in Euclidean space. Also, we study a sphere (a hyper-sphere) determined with respect to an associated indefinite

[^0]metric on a Riemannian manifold and the corresponding quadratic surface (hypersurface) in Euclidean space. We will mention some papers which concern models of hyper-spheres, spheres and circles with respect to some indefinite metrics and their relations with the corresponding quadratic geometrical objects ($[1,5,11,12,13]$).

The Hermitian manifolds form a class of manifolds with an integrable almost complex structure $J([9])$. One subclass consists of the so-called locally conformal Kähler manifolds, determined by a special property of the covariant derivative of J. Some of the recent investigations of locally conformal Kähler manifolds are made in $[2,3,10,14,15,16]$.

We consider a 4-dimensional Riemannian manifold M, endowed with a positive definite metric g and an endomorphism S in a tangent space $T_{p} M$ at an arbitrary point p on M. The fourth power of S is minus the identity and the components of S form a skew-circulant matrix with respect to some basis of $T_{p} M$. It is supposed that S is compatible with g. Such a manifold (M, g, S) is defined in [6]. In [7] it is proved that (M, g, J), where $J=S^{2}$, is a locally conformal Kähler manifold. We consider an associated metric \tilde{g} on (M, g, S), defined by both structures g and S. The metric \tilde{g} is necessarily indefinite and it determines space-like vectors, isotropic vectors and time-like vectors in every $T_{p} M$. We study hyper-spheres in $T_{p} M$, spheres and circles in some special subspaces of $T_{p} M$ with respect to \tilde{g}.

The paper is organized as follows. In Sect. 2., we recall some necessary facts, definitions and statements about the manifold (M, g, S) obtained in [6] and [7]. In Sect. 3., we find the equation of a central hyper-sphere in $T_{p} M$ with respect to the associated metric \tilde{g}. In Sect. 4., we consider spheres with respect to \tilde{g} in special 3 -dimensional subspaces of $T_{p} M$ and obtain their equations. In Sect. 5., we consider some special 2-planes in $T_{p} M$ and we get the equations of circles with respect to \tilde{g} in these 2-planes. We interpret all equations of the curves and surfaces, studied in Sect. 3., Sect. 4. and Sect. 5., in terms of g.

2. Preliminaries

The skew-circulant matrices are Toeplitz matrices, which are well-studied in [4] and [8]. In our work we consider a tensor structure on a 4-dimensional differentiable manifold, whose component matrix is skew-circulant. Therefore we recall the following definition. A real skew-circulant matrix with the first row $\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{R}^{4}$ is a square matrix of the form

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
-a_{4} & a_{1} & a_{2} & a_{3} \\
-a_{3} & -a_{4} & a_{1} & a_{2} \\
-a_{2} & -a_{3} & -a_{4} & a_{1}
\end{array}\right)
$$

We now introduce a manifold (M, g, S) in detail. Let M be a 4 -dimensional Riemannian manifold equipped with a tensor S of type $(1,1)$. Let the components
of S form the following skew-circulant matrix in a local coordinate system:

$$
S=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

Then S has the property

$$
\begin{equation*}
S^{4}=-\mathrm{id} \tag{2.1}
\end{equation*}
$$

We assume that g is a positive definite metric on M, which satisfies the equality

$$
\begin{equation*}
g(S u, S v)=g(u, v), \quad u, v \in \mathfrak{X} M \tag{2.2}
\end{equation*}
$$

Such a manifold (M, g, S) is introduced in [6]. The manifold (M, g, J), where $J=$ S^{2}, is a locally conformal Kähler manifold (Theorem 5.3 in [7]).

The associated metric \tilde{g} on (M, g, S), defined by

$$
\begin{equation*}
\tilde{g}(u, v)=g(u, S v)+g(S u, v) \tag{2.3}
\end{equation*}
$$

is necessarily indefinite. Consequently, having in mind (2.3), for an arbitrary vector v it is valid:

$$
\begin{equation*}
\tilde{g}(v, v)=2 g(v, S v)=a, \quad a \in \mathbb{R} \tag{2.4}
\end{equation*}
$$

According to the physical terminology we give the following
Definition 2.1. Let \tilde{g} be the associated metric on (M, g, S). If a vector u satisfies $\tilde{g}(u, u)>0$ (resp. $\tilde{g}(u, u)<0$), then u is a space-like (resp. a time-like) vector. If u is nonzero and satisfies $\tilde{g}(u, u)=0$, then u is an isotropic vector.

It is well-known that the norm of every vector u of the tangent space $T_{p} M$ and the cosine of the angle between two nonzero vectors u and v of $T_{p} M$ are given by

$$
\begin{gather*}
\|u\|=\sqrt{g(u, u)} \tag{2.5}\\
\cos \angle(u, v)=\frac{g(u, v)}{\|u\|\|v\|}
\end{gather*}
$$

A basis of type $\left\{u, S u, S^{2} u, S^{3} u\right\}$ of $T_{p} M$ is called an S-basis. In this case we say that the vector u induces an S-basis of $T_{p} M$. In [6] the following assertions are proved. If a vector u induces an S-basis, then
(i) the angles between the basis vectors are

$$
\begin{gather*}
\angle(u, S u)=\angle\left(S u, S^{2} u\right)=\angle\left(S^{2} u, S^{3} u\right)=\pi-\angle\left(S^{3} u, u\right) \\
\angle\left(u, S^{2} u\right)=\angle\left(S u, S^{3} u\right)=\frac{\pi}{2} \tag{2.7}
\end{gather*}
$$

(ii) the angle φ, determined by

$$
\begin{equation*}
\varphi=\angle(u, S u) \tag{2.8}
\end{equation*}
$$

satisfies inequalities

$$
\begin{equation*}
\frac{\pi}{4}<\varphi<\frac{3 \pi}{4} \tag{2.9}
\end{equation*}
$$

Next we have
Theorem 2.1. Let \tilde{g} be the associated metric on (M, g, S) and let the vector u induce an S-basis. The following propositions hold true.
(i) Vector u is space-like if and only if $\varphi \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.
(ii) Vector u is isotropic if and only if $\varphi=\frac{\pi}{2}$.
(iii) Vector u is time-like if and only if $\varphi \in\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right)$.

Proof. Using (2.4), (2.5), (2.6) and (2.8) we get $\tilde{g}(u, u)=2\|u\|^{2} \cos \varphi$. Having in mind Definition 2.1 and inequalities (2.9) the proof follows.

Evidently, due to (2.1), (2.2) and (2.3), we state
Corollary 2.1. If u is a space-like (isotropic or time-like) vector, then $S u, S^{2} u$ and $S^{3} u$ are space-like (isotropic or time-like) vectors, respectively.

In the next sections we get equations of hyper-spheres, spheres and circles with respect to \tilde{g} in some subspaces of $T_{p} M$ on (M, g, S). Obviously, the obtained curves and surfaces do not depend on the choice of the basis. We use orthonormal bases with respect to the metric g on (M, g, S) to find their equations easier. In Section 3., we use an orthonormal S-basis of $T_{p} M$. The existence of such bases is proved in [6]. In Section 4. and Section 5., we construct orthonormal bases of 3-dimensional subspaces of $T_{p} M$ and of 2-dimensional subspaces of $T_{p} M$ with the help of an arbitrary S-basis.

3. Hyper-spheres with respect to the associated metric

Let $\left\{u, S u, S^{2} u, S^{3} u\right\}$ be an orthonormal S-basis of $T_{p} M$ with respect to the metric g on (M, g, S). If $p_{x y z t}$ is a coordinate system such that the vectors $u, S u, S^{2} u$ and $S^{3} u$ are on the axes p_{x}, p_{y}, p_{z} and p_{t}, respectively, then $p_{x y z t}$ is orthonormal. The radius vector v of an arbitrary point (x, y, z, t) of $T_{p} M$ is expressed by the equality

$$
\begin{equation*}
v=x u+y S u+z S^{2} u+t S^{3} u \tag{3.1}
\end{equation*}
$$

A hyper-sphere s centered at the origin p, with respect to \tilde{g} on (M, g, S), is defined by (2.4). We apply (3.1) into (2.4), and bearing in mind that $p_{x y z t}$ is an orthonormal coordinate system and also equalities (2.1) and (2.2), we obtain the equation of s as follows:

$$
\begin{equation*}
2(x y-x t+y z+z t)=a \tag{3.2}
\end{equation*}
$$

Now, we transform the coordinate system $p_{x y z t}$ into $p_{x^{\prime} y^{\prime} z^{\prime} t^{\prime}}$ by

$$
\begin{align*}
& x=\frac{1}{2}\left(x^{\prime}-y^{\prime}+z^{\prime}-t^{\prime}\right), \quad y=\frac{\sqrt{2}}{2}\left(-y^{\prime}+t^{\prime}\right) \\
& z=-\frac{1}{2}\left(x^{\prime}+y^{\prime}+z^{\prime}+t^{\prime}\right), \quad t=\frac{\sqrt{2}}{2}\left(-x^{\prime}+z^{\prime}\right) . \tag{3.3}
\end{align*}
$$

We substitute (3.3) into (3.2) and it takes the form

$$
\begin{equation*}
x^{\prime 2}+y^{\prime 2}-z^{\prime 2}-t^{\prime 2}=\frac{a}{\sqrt{2}} . \tag{3.4}
\end{equation*}
$$

Evidently, in terms of g, we have that (3.4) is an equation of a 3-dimensional hyperboloid.

Therefore, we state the following
Theorem 3.1. Let \tilde{g} be the associated metric on (M, g, S) and let the vector u induce an orthonormal S-basis of $T_{p} M$. If $p_{x y z t}$ is a coordinate system such that $u \in p_{x}, S u \in p_{y}, S^{2} u \in p_{z}, S^{3} u \in p_{t}$, then the hyper-sphere (2.4) has the equation (3.4) with respect to the coordinate system $p_{x^{\prime} y^{\prime} z^{\prime} t^{\prime}}$, obtained by the transformation (3.3) of $p_{x y z t}$.

Corollary 3.1. Let s be the 3-dimensional hyperboloid (3.4). The following propositions are valid.
i) Every point on s, where $a<0$, has a time-like radius vector;
ii) Every point on s, where $a=0$, has an isotropic radius vector;
iii) Every point on s, where $a>0$, has a space-like radius vector.

Proof. According to Definition 2.1 and due to (2.4) the statement holds.
Corollary 3.2. Let s be the 3-dimensional hyperboloid (3.4). Then the intersections $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and σ_{4} between s and the coordinate planes of $p_{x^{\prime} y^{\prime} z^{\prime} t^{\prime}}$, respectively, are the following surfaces:
i) σ_{1}, σ_{2} are hyperboloids of two sheets and σ_{3}, σ_{4} are hyperboloids of one sheet, in case $a>0$;
ii) σ_{1}, σ_{2} are hyperboloids of one sheet and σ_{3}, σ_{4} are hyperboloids of two sheets, in case $a<0$;
iii) $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and σ_{4} are circular cones, in case $a=0$.

Proof. Using (3.4) and the equation of the coordinate plane $x^{\prime}=0$ we get the surface $\sigma_{1}: \sqrt{2}\left(y^{\prime 2}-z^{\prime 2}-t^{\prime 2}\right)=a, x^{\prime}=0$. Consequently, if $a>0$, then σ_{1} is a hyperboloid of two sheet, if $a<0$, then σ_{1} is a hyperboloid of one sheet and if $a=0$, then σ_{1} is a circular cone. Similarly, we consider the other cases of intersections σ_{2}, σ_{3} and σ_{4}.

Theorem 3.2. Let \tilde{g} be the associated metric on (M, g, S) and let the vector u induce an orthonormal S-basis of $T_{p} M$. If $p_{x y z t}$ is a coordinate system such that $u \in p_{x}, S u \in p_{y}, S^{2} u \in p_{z}$ and $S^{3} u \in p_{t}$, then $u, S u, S^{2} u$ and $S^{3} u$ are isotropic vectors and their heads lie at the surface with equations

$$
\begin{equation*}
x^{\prime 2}+y^{\prime 2}=\frac{1}{2}, \quad z^{\prime 2}+t^{\prime 2}=\frac{1}{2} \tag{3.5}
\end{equation*}
$$

where $p_{x^{\prime} y^{\prime} z^{\prime} t^{\prime}}$ is the coordinate system obtained by the transformation (3.3) of $p_{x y z t}$.
Proof. Bearing in mind (2.3) and Definition 2.1 we get that $u, S u, S^{2} u$ and $S^{3} u$ are isotropic vectors with respect to \tilde{g}. Therefore, their heads are on the hyper-cone (3.4) in case $a=0$. On the other hand, these heads lie at the unit hyper-sphere with respect to g. This hyper-sphere with respect to $p_{x^{\prime} y^{\prime} z^{\prime} t^{\prime}}$ has the equation

$$
\begin{equation*}
x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+t^{\prime 2}=1 \tag{3.6}
\end{equation*}
$$

The system of (3.4), where $a=0$, and (3.6) gives the intersection of a hypercone with a hyper-sphere. This intersection, with respect to the coordinate system $p_{x^{\prime} y^{\prime} z^{\prime} t^{\prime}}$, is represented by the equivalent system (3.5).

4. Spheres in a 3-dimensional subspace of $T_{p} M$

Let the unit vector u induce an S-basis of $T_{p} M$. Hence u induces four different pyramids spanned by the following triples $\left\{u, S u, S^{2} u\right\},\left\{S u, S^{2} u, S^{3} u\right\},\left\{u, S u, S^{3} u\right\}$ and $\left\{u, S^{2} u, S^{3} u\right\}$. According to (2.2) and (2.7), the first and the second pyramid constructed on these basis vectors are equal, as well as the third and the fourth pyramid are also equal. Thus we will investigate only the subspaces with bases defined by the first and the third pyramid.

4.1. A sphere in the 3 -dimensional subspace of $T_{p} M$, spanned by vectors $u, S u$ and $S^{2} u$

Lemma 4.1. Let α_{1} be a subspace of $T_{p} M$ with a basis $\left\{u, S u, S^{2} u\right\}$. The system of vectors $\left\{e_{1}, e_{2}, e_{3}\right\}$, determined by the equalities

$$
\begin{equation*}
e_{1}=u, \quad e_{2}=\frac{(-\cos \varphi) u+S u-(\cos \varphi) S^{2} u}{\sqrt{1-2 \cos ^{2} \varphi}}, \quad e_{3}=S^{2} u \tag{4.1}
\end{equation*}
$$

where $\varphi=\angle(u, S u)$, form an orthonormal basis of α_{1}.
Proof. Using (2.2), (2.7) and (4.1) we obtain $g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1$ and $g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{3}\right)=0$.

The coordinate system $p_{x y z}$ such that $e_{1} \in p_{x}, e_{2} \in p_{y}$ and $e_{3} \in p_{z}$ is orthonormal.

A sphere s_{1} in α_{1} centered at the origin p, with respect to \tilde{g} on (M, g, S), is defined by (2.4). In the next statement we get the equation of s_{1} with respect to the orthonormal coordinate system $p_{x y z}$.

Theorem 4.1. Let \tilde{g} be the associated metric on (M, g, S) and let α_{1} be a 3dimensional subspace of $T_{p} M$ with a basis $\left\{u, S u, S^{2} u\right\}$. If e_{1}, e_{2} and e_{3} are determined by (4.1) and $p_{x y z}$ is a coordinate system such that $e_{1} \in p_{x}, e_{2} \in p_{y}, e_{3} \in p_{z}$, then the equation of the sphere s_{1} in α_{1} is given by

$$
\begin{equation*}
2(\cos \varphi)\left(x^{2}-y^{2}+z^{2}\right)+2 \sqrt{1-2 \cos ^{2} \varphi}(x y+y z)=a \tag{4.2}
\end{equation*}
$$

Proof. The radius vector v of an arbitrary point (x, y, z) on α_{1} is expressed by $v=x e_{1}+y e_{2}+z e_{3}$. We apply the latter equality into (2.4) and we find

$$
\begin{array}{r}
\tilde{g}\left(e_{1}, e_{1}\right) x^{2}+\tilde{g}\left(e_{2}, e_{2}\right) y^{2}+\tilde{g}\left(e_{3}, e_{3}\right) z^{2}+2 \tilde{g}\left(e_{1}, e_{2}\right) x y \\
+2 \tilde{g}\left(e_{1}, e_{3}\right) x z+2 \tilde{g}\left(e_{2}, e_{3}\right) y z=a . \tag{4.3}
\end{array}
$$

Using (2.2), (2.3), (2.7) and (4.1), we obtain

$$
\begin{array}{r}
\tilde{g}\left(e_{1}, e_{1}\right)=2 \cos \varphi, \quad \tilde{g}\left(e_{3}, e_{3}\right)=2 \cos \varphi, \quad \tilde{g}\left(e_{2}, e_{2}\right)=-2 \cos \varphi, \\
\tilde{g}\left(e_{1}, e_{2}\right)=\tilde{g}\left(e_{2}, e_{3}\right)=\sqrt{1-2 \cos ^{2} \varphi, \quad \tilde{g}\left(e_{1}, e_{3}\right)=0 .} .
\end{array}
$$

Substituting the latter equalities into (4.3) we get (4.2).
Now, we transform the coordinate system $p_{x y z}$ into $p_{x^{\prime} y^{\prime} z^{\prime}}$ by

$$
x=\frac{1}{\sqrt{2}} x^{\prime}+\lambda_{1} y^{\prime}+\mu_{1} z^{\prime}, \quad y=\lambda_{2} y^{\prime}+\mu_{2} z^{\prime}, \quad z=-\frac{1}{\sqrt{2}} x^{\prime}+\lambda_{1} y^{\prime}+\mu_{1} z^{\prime}
$$

where

$$
\begin{align*}
\lambda_{1}=\frac{1}{2} \sqrt{1+\sqrt{2} \cos \varphi}, & \lambda_{2}=\frac{\sqrt{2}}{2} \sqrt{1-\sqrt{2} \cos \varphi} \tag{4.4}\\
\mu_{1}=\frac{1}{2} \sqrt{1-\sqrt{2} \cos \varphi}, & \mu_{2}=-\frac{\sqrt{2}}{2} \sqrt{1+\sqrt{2} \cos \varphi} \tag{4.5}
\end{align*}
$$

Therefore the equation (4.2) takes the form

$$
\begin{equation*}
2 \cos \varphi x^{\prime 2}+\sqrt{2} y^{\prime 2}-\sqrt{2} z^{\prime 2}=a \tag{4.6}
\end{equation*}
$$

Corollary 4.1. Let s_{1} be the surface, determined by (4.6) in case $a=0$. The following statements hold true.
i) If $\varphi \neq \frac{\pi}{2}$, then s_{1} is a cone;
ii) If $\varphi=\frac{\pi}{2}$, then s_{1} separates into two planes $z^{\prime}= \pm y^{\prime}$.

Corollary 4.2. Let s_{1} be the surface, determined by (4.6) in case $a>0$. The following statements hold true.
i) If $\varphi \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, then s_{1} is a hyperboloid of one sheets;
ii) If $\varphi \in\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right)$, then s_{1} is a hyperboloid of two sheet;
iii) If $\varphi=\frac{\pi}{2}$, then s_{1} is a hyperbolic cylinder.

Corollary 4.3. Let s_{1} be the surface, determined by (4.6) in case $a<0$. The following statements hold true.
i) If $\varphi \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, then s_{1} is a hyperboloid of two sheets;
ii) If $\varphi \in\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right)$, then s_{1} is a hyperboloid of one sheet;
iii) If $\varphi=\frac{\pi}{2}$, then s_{1} is a hyperbolic cylinder.

4.2. A sphere in the 3 -dimensional subspace of $T_{p} M$, spanned by

 vectors $u, S u$ and $S^{3} u$Lemma 4.2. Let α_{2} be a subspace of $T_{p} M$ with a basis $\left\{u, S u, S^{3} u\right\}$. The system of vectors $\left\{e_{1}, e_{2}, e_{3}\right\}$, determined by the equalities

$$
\begin{equation*}
e_{1}=S u, \quad e_{2}=\frac{u-(\cos \varphi) S u+(\cos \varphi) S^{3} u}{\sqrt{1-2 \cos ^{2} \varphi}}, \quad e_{3}=S^{3} u \tag{4.7}
\end{equation*}
$$

where $\varphi=\angle(u, S u)$, is an orthonormal basis of α_{2}.
Proof. Using (2.1), (2.2), (2.7) and (4.7) we obtain $g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0$, $g\left(e_{1}, e_{3}\right)=0$ and $g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1$.

The coordinate system $p_{x y z}$ such that the vectors e_{1}, e_{2} and e_{3} are on the axes p_{x}, p_{y} and p_{z}, respectively, is orthonormal.

A sphere s_{2} in α_{2} centered at the origin p, with respect to \tilde{g} on (M, g, S), is defined by (2.4). In the next statement we get the equation of s_{2} with respect to the orthonormal coordinate system $p_{x y z}$.

Theorem 4.2. Let \tilde{g} be the associated metric on (M, g, S) and let α_{2} be a 3dimensional subspace of $T_{p} M$ with a basis $\left\{u, S u, S^{2} u\right\}$. If e_{1}, e_{2} and e_{3} are determined by (4.7) and $p_{x y z}$ is a coordinate system such that $e_{1} \in p_{x}, e_{2} \in p_{y}, e_{3} \in p_{z}$, then the equation of the sphere s_{2} in α_{2} is given by

$$
\begin{equation*}
2(\cos \varphi)\left(x^{2}-y^{2}+z^{2}\right)+2 \sqrt{1-2 \cos ^{2} \varphi}(x y-y z)=a \tag{4.8}
\end{equation*}
$$

Proof. The radius vector v of an arbitrary point (x, y, z) on α_{2} is expressed by $v=x e_{1}+y e_{2}+z e_{3}$. Then (2.4) takes the form

$$
\begin{array}{r}
\tilde{g}\left(e_{1}, e_{1}\right) x^{2}+\tilde{g}\left(e_{2}, e_{2}\right) y^{2}+\tilde{g}\left(e_{3}, e_{3}\right) z^{2}+2 \tilde{g}\left(e_{1}, e_{2}\right) x y \\
+2 \tilde{g}\left(e_{1}, e_{3}\right) x z+2 \tilde{g}\left(e_{2}, e_{3}\right) y z=a \tag{4.9}
\end{array}
$$

By (2.2), (2.3), (2.7) and (4.7) we obtain

$$
\begin{array}{r}
\tilde{g}\left(e_{1}, e_{1}\right)=2 \cos \varphi, \quad \tilde{g}\left(e_{3}, e_{3}\right)=2 \cos \varphi, \quad \tilde{g}\left(e_{2}, e_{2}\right)=-2 \cos \varphi \\
\tilde{g}\left(e_{1}, e_{2}\right)=\sqrt{1-2 \cos ^{2} \varphi}, \quad \tilde{g}\left(e_{1}, e_{3}\right)=0, \quad \tilde{g}\left(e_{2}, e_{3}\right)=-\sqrt{1-2 \cos ^{2} \varphi}
\end{array}
$$

Substituting the latter equalities into (4.9) we get (4.8).
After transformation of the coordinate system $p_{x y z}$ into $p_{x^{\prime} y^{\prime} z^{\prime}}$ by

$$
x=\frac{1}{\sqrt{2}} x^{\prime}+\lambda_{1} y^{\prime}+\mu_{1} z^{\prime}, \quad y=\lambda_{2} y^{\prime}+\mu_{2} z^{\prime}, \quad z=\frac{1}{\sqrt{2}} x^{\prime}-\lambda_{1} y^{\prime}-\mu_{1} z^{\prime}
$$

with (4.4) and (4.5), the equation (4.8) takes the form

$$
2 \cos \varphi x^{\prime 2}+\sqrt{2} y^{\prime 2}-\sqrt{2} z^{\prime 2}=a
$$

The above equation is the same as (4.6).

5. Circles in a special 2-planes of $T_{p} M$

Let the unit vector u induce an S-basis of $T_{p} M$. Now we study circles in three different subspaces β_{1}, β_{2} and β_{3} spanned by 2-planes $\left\{u, S^{2} u\right\},\{u, S u\}$ and $\left\{u, S^{3} u\right\}$, respectively.

5.1. Circles in the 2-plane β_{1}

Due to (2.7) it is true that both vectors u and $S^{2} u$ form an orthonormal basis of β_{1}. We construct a coordinate system $p_{x y}$ on β_{1}, such that u is on the axis p_{x} and $S^{2} u$ is on the axis p_{y}. Therefore $p_{x y}$ is an orthonormal coordinate system of β_{1}.

Lemma 5.1. The system $\left\{u, S^{2} u\right\}$ satisfies the following equalities:

$$
\begin{equation*}
\tilde{g}(u, u)=\tilde{g}\left(S^{2} u, S^{2} u\right)=2 \cos \varphi, \quad \tilde{g}\left(u, S^{2} u\right)=0 \tag{5.1}
\end{equation*}
$$

Proof. From (2.2), (2.3), (2.7) we get (5.1) by direct calculations.
A circle k_{1} in β_{1} centered at the origin p, with respect to \tilde{g} on (M, g, S), is defined by (2.4). Now we obtain the equation of k_{1} with respect to $p_{x y}$.

Theorem 5.1. Let \tilde{g} be the associated metric on (M, g, S) and let β_{1} be a 2-plane in $T_{p} M$ with a basis $\left\{u, S^{2} u\right\}$. If $p_{x y}$ is a coordinate system such that $u \in p_{x}$, $S^{2} u \in p_{y}$, then the equation of the circle k_{1} in β_{1} is given by

$$
\begin{equation*}
2 \cos \varphi x^{2}+2 \cos \varphi y^{2}=a, \quad \varphi \neq \frac{\pi}{2} \tag{5.2}
\end{equation*}
$$

Proof. The radius vector v of an arbitrary point on β_{1} is expressed by

$$
\begin{equation*}
v=x u+y S^{2} u \tag{5.3}
\end{equation*}
$$

which implies $S^{2} v=-y u+x S^{2} u$. Then from (2.4), (5.1) and (5.3) it follows (5.2).

Corollary 5.1. Let k_{1} be the curve determined by (5.2). Then k_{1} is a circle in case when $a>0$ and $\varphi \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, or in case when $a<0$ and $\varphi \in\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right)$. The curve k_{1} degenerates into the point p in case $a=0$.

We note that a 2-plane $\delta=\{u, J u\}$, where $\delta=J \delta$, is known as J-invariant section of $T_{p} M$ on an almost Hermitian manifold (M, g, J). Therefore, the 2-plane $\beta_{1}=$ $\left\{u, S^{2} u\right\}$ is a J-invariant section of $T_{p} M$ on the manifold $(M, g, J), J=S^{2}$.

5.2. Circles in the 2-plane β_{2}

Lemma 5.2. Let β_{2} be the 2-plane spanned by unit vectors u and $S u$. The system of vectors $\left\{e_{1}, e_{2}\right\}$, determined by the equalities

$$
\begin{equation*}
e_{1}=\frac{1}{\sqrt{2(1+\cos \varphi)}}(u+S u), \quad e_{2}=\frac{1}{\sqrt{2(1-\cos \varphi)}}(-u+S u), \tag{5.4}
\end{equation*}
$$

where $\varphi=\angle(u, S u)$, is an orthonormal basis of β_{2}.
Proof. Using (2.7) and (5.4), we calculate $g\left(e_{1}, e_{2}\right)=0$ and $g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=$ 1.

We construct a coordinate system $p_{x y}$ on β_{2}, such that e_{1} is on the axis p_{x} and e_{2} is on the axis p_{y}, i.e. $p_{x y}$ is orthonormal.

Lemma 5.3. The system $\left\{e_{1}, e_{2}\right\}$ satisfies the following equalities:

$$
\begin{equation*}
\tilde{g}\left(e_{1}, e_{1}\right)=\frac{2 \cos \varphi+1}{1+\cos \varphi}, \quad \tilde{g}\left(e_{2}, e_{2}\right)=\frac{2 \cos \varphi-1}{1-\cos \varphi}, \quad \tilde{g}\left(e_{1}, e_{2}\right)=0 . \tag{5.5}
\end{equation*}
$$

Proof. Using (2.2), (2.3) and (2.7) we get (5.5) by direct calculations.
A circle k_{2} in β_{2} centered at the origin p, with respect to \tilde{g} on (M, g, S), is defined by (2.4). Further we obtain the equation of k_{2} with respect to $p_{x y}$.

Theorem 5.2. Let \tilde{g} be the associated metric on (M, g, S) and let $\beta_{2}=\{u, S u\}$ be a 2-plane in $T_{p} M$ with an orthonormal basis (5.4). If $p_{x y}$ is a coordinate system such that $e_{1} \in p_{x}, e_{2} \in p_{y}$, then the equation of the circle k_{2} in β_{2} is given by

$$
\begin{equation*}
\frac{2 \cos \varphi+1}{1+\cos \varphi} x^{2}+\frac{2 \cos \varphi-1}{1-\cos \varphi} y^{2}=a . \tag{5.6}
\end{equation*}
$$

Proof. The radius vector v of an arbitrary point on β_{2} is $v=x e_{1}+y e_{2}$. Using the latter equality, from (2.4) we get

$$
\tilde{g}(v, v)=\tilde{g}\left(e_{1}, e_{1}\right) x^{2}+2 \tilde{g}\left(e_{1}, e_{2}\right) x y+\tilde{g}\left(e_{2}, e_{2}\right) y^{2}=a
$$

Applying (5.5) into the above equation we find (5.6).
According to the parameters a and φ the equation (5.6) describes different quadratic curves. All possible values of these parameters and the corresponding types of the curve (5.6) are studied in the Table 5.1.

5.3. Circles in the 2 -plane β_{3}

Lemma 5.4. Let β_{3} be the 2-plane spanned by unit vectors u and $S^{3} u$. The system of vectors $\left\{e_{1}, e_{2}\right\}$, determined by the equalities

$$
\begin{equation*}
e_{1}=\frac{1}{\sqrt{2(1-\cos \varphi)}}\left(u+S^{3} u\right), \quad e_{2}=\frac{1}{\sqrt{2(1+\cos \varphi)}}\left(-u+S^{3} u\right) \tag{5.7}
\end{equation*}
$$

where $\varphi=\angle(u, S u)$, is an orthonormal basis of β_{3}.
Proof. Using (2.7) and (5.7), we calculate $g\left(e_{1}, e_{2}\right)=0$ and $g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=$ 1.

We construct a coordinate system $p_{x y}$ on β_{3}, such that $e_{1} \in p_{x}$ and $e_{2} \in p_{y}$, i.e. $p_{x y}$ is orthonormal.

Lemma 5.5. The system $\left\{e_{1}, e_{2}\right\}$ satisfies the following equalities:

$$
\begin{equation*}
\tilde{g}\left(e_{1}, e_{1}\right)=\frac{2 \cos \varphi-1}{1-\cos \varphi}, \quad \tilde{g}\left(e_{2}, e_{2}\right)=\frac{2 \cos \varphi+1}{1+\cos \varphi}, \quad \tilde{g}\left(e_{1}, e_{2}\right)=0 \tag{5.8}
\end{equation*}
$$

Proof. Using (2.1), (2.2), (2.3) and (2.7) we get (5.8) by direct calculations.
A circle k_{3} in β_{3} centered at the origin p, with respect to \tilde{g} on (M, g, S), is defined by (2.4). In the next statement we obtain the equation of k_{3} with respect to $p_{x y}$.

Theorem 5.3. Let \tilde{g} be the associated metric on (M, g, S) and let $\beta_{3}=\left\{u, S^{3} u\right\}$ be a 2-plane in $T_{p} M$ with an orthonormal basis (5.7). If $p_{x y}$ is a coordinate system such that $e_{1} \in p_{x}, e_{2} \in p_{y}$, then the equation of a circle k_{3} in β_{3} is given by

$$
\begin{equation*}
\frac{2 \cos \varphi-1}{1-\cos \varphi} x^{2}+\frac{2 \cos \varphi+1}{1+\cos \varphi} y^{2}=a \tag{5.9}
\end{equation*}
$$

Proof. The radius vector v of an arbitrary point on β_{3} is $v=x e_{1}+y e_{2}$. Then (2.4) imply

$$
\begin{equation*}
\tilde{g}(v, v)=\tilde{g}\left(e_{1}, e_{1}\right) x^{2}+2 \tilde{g}\left(e_{1}, e_{2}\right) x y+\tilde{g}\left(e_{2}, e_{2}\right) y^{2}=a \tag{5.10}
\end{equation*}
$$

We apply (5.8) into (5.10) and we find (5.9).
The equation (5.9) determines curves which are the same as the obtained ones by (5.6). They are described in the Table 5.1.

Table 5.1: Curves k_{2} and k_{3}

φ	a	k_{2}, k_{3}
$\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$	$a>0$	an ellipse
	$a=0$	the point p
	$a<0$	the empty set
$\frac{\pi}{3}$	$a>0$	two lines $x= \pm \frac{\sqrt{3 a}}{2}$
	$a=0$	the line $\mathrm{x}=0$
	$a<0$	the empty set
$\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$	$a>0$	a hyperbola
	$a=0$	two lines $y= \pm c x, c$ is a constant
	$a<0$	a hyperbola
$\frac{2 \pi}{3}$	$a>0$	the empty set
	$a=0$	the line y=0
	$a<0$	two lines $y= \pm \frac{\sqrt{-3 a}}{2}$
$\left(\frac{2 \pi}{3}, \frac{3 \pi}{4}\right)$	$a>0$	the empty set
	$a=0$	the point p
	$a<0$	an ellipse

REFERENCES

1. N. Abe, Y. Nakanishi and S. Yamaguchi: Circles and spheres in pseudo-Riemannian geometry, Aequationes Math. 39 (1990), no. 2-3, 134-145. https://doi.org/10.1007/BF01833144
2. D. Angella and M. Origlia: Locally conformally Kähler structures on fourdimensional solvable Lie algebras, Complex Manifolds 7 (2020), no. 1, 1-35. https://doi.org/10.1515/coma-2020-0001
3. Y. Cherevko, V. Berezovski, I. Hinterleitner and D. Smetanova: Infinitesimal transformations of locally conformal Kähler manifolds, Mathematics 7 (2019), no. 8, 658 pp. https://doi.org/10.3390/math7080658
4. P. J. Davis, Circulant matrices: A Wiley-Interscience Publication. Pure and Applied Mathematics. John Wiley and Sons, New York-Chichester-Brisbane, 1979.
5. I. Dokuzova and G. Dzhelepov: Spheres and circles in a tangent space of a 4dimensional Riemannian manifold with respect to an indefinite metric, J. Geom. 109 (2018), no. 3, Paper No. 49, 11 pp. https://doi.org/10.1007/s00022-018-0455-x
6. I. Dokuzova and D. Razpopov: Four-dimensional almost Einstein manifolds with skew-circulant structures, J. Geom. 111 (2020), no. 1, Paper No. 9, 18 pp. https://doi.org/10.1007/s00022-020-0521-z
7. I. Dokuzova and D. Razpopov: A Riemannian manifold with skew-circulant structures and an associated locally conformal Kähler manifold, Novi Sad J. Math. (2023) (in print) https://doi.org/10.30755/NSJOM. 12412
8. R. M. Gray: Toeplitz and circulant matrices: A review, Found. Trends Commun. Inf. Theory 2 (2006), no. 3, 155-239. http://dx.doi.org/10.1561/0100000006
9. A. Gray and L. M. Hervella: The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4), 123 (1980), 35-58. https://doi.org/10.1007/BF01796539
10. T. Huang: A note on Euler number of locally conformally Kähler manifolds, Math. Z. 296 (2020), no. 3-4, 1725-1733. https://doi.org/10.1007/s00209-020-02491-y
11. T. Ikawa: On curves and submanifolds in an indefiniteRiemannian manifold, Tsukuba J. Math. 9 (1985), no. 2, 353-371. https://doi.org/10.21099/tkbjm/1496160296
12. J. J. Konderak: Construction of harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces, Proc. Amer. Math. Soc. 109 (1990), no. 2, 469-476. https://doi.org/10.1090/S0002-9939-1990-0993755-2
13. R. Lopez: Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7 (2014), no 1, 44-107. https://doi.org/10.36890/iejg. 594497
14. A. Moroianu, S. Moroianu and L. Ornea: Locally conformally Kähler manifolds with holomorphic Lee field, Differential Geom. Appl., 60 (2018), 33-38. https://doi.org/10.1016/j.difgeo.2018.05.004
15. M. Prvanović: Some properties of the locally conformal Kähler manifold, Bull. Cl. Sci. Math. Nat. Sci. Math. 35 (2010), 9-23. https://www.emis.de/journals/BSANU/35/2.html
16. G. E. Vilcu: Ruled CR-submanifolds of locally conformal Kähler manifolds, J. Geom. Phys. 62 (2012), no. 6, 1366-1372. https://doi.org/10.1016/j.geomphys.2012.02.004.

[^0]: Received January 07, 2022, accepted: August 18, 2023
 Communicated by Ljubica Velimirović
 Corresponding Author: Iva Dokuzova (dokuzova@uni-plovdiv.bg)
 2010 Mathematics Subject Classification. Primary 53B20; Secondary 53B30, 15B05, 51N20

